簡易檢索 / 詳目顯示

研究生: 林威廷
Lin, Wei-Ting
論文名稱: 磁性奈米柱在團聯式共聚物及均聚物中的排列行為
Organization of magnetic nanorods in block copolymer and homopolymer
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 磁性奈米柱團聯式共聚物均聚物結構排列
外文關鍵詞: magnetic nanorod, block copolymer, homopolymer, morphology, arrangement
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以trioctylphosphine oxide (TOPO)和 trioctylphosphine (TOP)作為界面活性劑,Fe(CO)5為前驅物,以熱裂解方式合成Fe2P磁性奈米柱,此奈米柱再分別與均聚物 poly (2-vinylpyridine) (P2VP)和poly (styrene-b-2-vinylpyridine) (PS-b-P2VP)進行混摻形成複合材料。藉由改變複合材料系統中的條件,研究Fe2P奈米柱在複合材料的排列行為。
    在奈米柱/P2VP複合材料的研究中,未加磁場時,奈米柱主要是以反向的平行排列為主,而其平行排列的結構則受到奈米柱長度、粒子添加量、P2VP分子量的影響。長度為20 nm之奈米柱在低粒子添加量下,為零散分佈P2VP中,在高粒子添加量下呈平行排列,而P2VP分子量的提高也會使平行排列現象較明顯。外加磁場時,由於磁性奈米柱與磁場之間的作用力,使奈米柱平行於磁場方向,呈一鏈狀排列,而磁場強度的提高使奈米柱的方向性越明顯,部份的鏈狀排列甚而進一步形成網狀結構。
    在奈米柱/PS-b-P2VP複合材料的研究中,由於未改質的奈米柱表面殘留的TOPO層與共聚物的高分子皆不相容,故低粒子添加量下即形成奈米柱的聚集,並影響周圍共聚物的層狀結構。藉由熱迴流方式以pyridine改質奈米柱表面,改善奈米柱在共聚物中的聚集。長度為20 nm以pyridine改質的奈米柱在低粒子添加量下,奈米柱在共聚物中的位置與角度皆有一選擇性,其位置大部分皆位於P2VP層,而其角度則受到P2VP鏈的形態熵(conformational entropy)影響,使其方向平行於高分子層。以pyridine改質的40 nm和100 nm之奈米柱,由於其尺寸緣故,在低粒子添加量下就形成聚集,並使共聚物的層狀結構轉變成扭曲層狀(modulated lamellae)。

    Fe2P nanorods were prepared by thermalysis. using trioctylphosphine oxide (TOPO) and trioctylphosphine (TOP) as surfactants, and Fe(CO)5 as a precursor. As prepared nanorods were mixed with poly(2-vinylpyridine) (P2VP) and poly (styrene-b-2-vinylpyridine) (PS-b-P2VP), respectively, to prepare composites. We change different experimental conditions to investigate the behavior of nanorods in these composties.
    In nanorod/P2VP composites, nanorods formed raft-like arrangement with anti-parallel particle pairs. The length of nanorods, particle loading, and the molecular weight of P2VP affect the rod arrangement. At low particle loading (rod length= 20 nm), nanorods dispersed uniformely in P2VP. In contrast, nanorods formed a raft-like structure at high particle loading. The raft-like arrangement was more obvious with increasing molecular weight of P2VP. With an applied magnetic field, the interaction between magnetic nanorods and magnetic field force nanorods to align parallel to the magnetic field, forming a chain-like structure. As increasing the magnetitude of magnetic field, increased more nanorods formed a chain-like structure, inducing a network structure.
    In nanorod/PS-b-P2VP composites, the residu TOPO on the surface of nanorods exhibited poor compatibility with both PS and P2VP. This caused the aggregation of nanorods at low particle loading and hance destroying the lamellae structure of PS-b-P2VP around them. Using the reflux with pyridine to modifiy nanorod surface, the dispersion of nanorods in PS-b-P2VP weas improved. The pyridine modified nanorods (20 nm) were sequestered in P2VP domains and aligned along the PS and P2VP. This particular orientation of nanorods was induced by the conformational entropy. As the length of nanorods increased, the aggregation of nanorods were formed at low particle loading, causing a structure transition of PS-b-P2VP from lamellae to modulated lamellae.

    中文摘要 I Abstract II 致謝 IV 總目錄 V 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1奈米材料 3 2.1.1 奈米粒子簡介 3 2.2 磁學理論 7 2.2.1 磁性體分類 7 2.2.2 磁性奈米微粒之磁性質探討 11 2.2.2.1磁滯曲線(Hysteresis curve) 12 2.2.2.2超順磁性(Superparamagnetism) 14 2.2.3金屬奈米顆粒的磁性 15 2.3共聚物基礎理論 16 2.4奈米柱/共聚物自組裝控制 21 2.5 奈米磁性材料在流體中的分子模擬 31 第三章 實驗內容 38 3-1藥品 38 3-2儀器與耗材 39 3-3實驗步驟 40 3-3-1 Fe2P柱狀奈米粒子的合成 40 3-3-2 柱狀奈米粒子/均聚物(P2VP)複合材料的製備 40 3-3-3柱狀奈米粒子的表面改質 40 3-3-4柱狀奈米粒子/共聚物(PS-b-P2VP)複合材料的製備 41 3-3-5 實驗架構- 奈米柱的特性分析 42 3-3-6 實驗架構- 複合材料的特性分析 42 3-4分析儀器 43 3-4-1 穿透式電子顯微鏡 43 3-4-2 熱重分析儀 44 3-4-3 X光粉末繞射儀 46 3-4-4 小角度X光散射儀 47 第四章 結果與討論 49 4-1 磁性奈米柱之合成及TEM分析 49 4-1-1 磷化鐵奈米柱的晶體結構鑑定 52 4-1-2 奈米柱的表面特性分析- IR、EDX 54 4-1-3 奈米柱的表面特性分析- TGA 56 4-2磁性奈米柱在均聚物中的排列行為 61 4-2-1奈米柱/P2VP均聚物在未加磁場下的排列行為 61 4-2-2外加磁場對磁性奈米柱在均聚物中排列行為的影響 69 4-2-3磁性奈米柱在均聚物中的排列行為分析 86 4-3 共聚物/奈米柱之薄膜複合材料 97 4-3-1 長度為20 nm 之奈米柱/PS-P2VP之薄膜複合材料 97 4-3-2 長度為40 nm之奈米柱/PS-P2VP之薄膜複合材料 105 4-3-3 長度為100 nm之奈米柱/PS-P2VP之薄膜複合材料 108 4-3-4 奈米柱在團聯式共聚物的排列行為 110 第五章 結論 112 參考文獻 114

    1.馬振基, ed. 奈米材料科技原理與應用. 2003, 全華科技圖書股份有限公司.
    2.張立德, ed. 奈米材料. 2002, 五南出版社.
    3.伊邦躍, ed. 奈米時代. 2002, 五南出版社
    4.W.P. Halperin, Reviews of Modern Physics. 1986, 58, 3,533.
    5.S.張.李. Chikaqumi, ed. 磁性物理學. 1981, 聯經出版社
    6.D.L. Huber, Small. 2005, 1, 5, 482.
    7.陳奕瀚, 以離子型高分子製備核殼型與中空形奈米磁性複合微粒之研究. 2006, 南台科技大學化材系碩士論文.
    8.H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake, and S. Yamada, Physics Letters A. 1999, 263, 4-6, 406.
    9.H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, and M. Miyake, Physical Review B. 2004, 69, 17, 174411.
    10.F.J.B. Calleja, ed. Block copolymers. 2000, Marcel Dekker, Inc.
    11.F. Liu,N. Goldenfeld, Physical Review A. 1989, 39, 9, 4805.
    12.A. Chakrabarti, R. Toral, uacute, and J.D. Gunton, Physical Review A. 1991, 44, 10, 6503.
    13.L. Leibler, Macromolecules. 1980, 13, 6, 1602.
    14.E. Helfand,Z.R. Wasserman, Macromolecules. 1978, 11, 5, 960.
    15.E. Helfand,Z. Wasserman, Macromolecules. 1980, 13, 4, 994.
    16.I.W. Hamley, ed. The Physics of Block Copolymers. 1998, oxford science publications
    17.E. Helfand, Macromolecules. 1975, 8, 4, 552.
    18.J.D. Vavasour,M.D. Whitmore, Macromolecules. 1992, 25, 20, 5477.
    19.M.W. Matsen, Soft Matter. 2006, 1,
    20.G.S. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka, Pharmaceutical Research. 1995, 12, 2, 192.
    21.C.S.T. Laicer, T.Q. Chastek, T.P. Lodge, and T.A. Taton, Macromolecules. 2005, 38, 23, 9749.
    22.E. Ploshnik, A. Salant, U. Banin, and R. Shenhar, Adv. Mater. 2010, 22, 25, 2774.
    23.Q.L. Zhang, S. Gupta, T. Emrick, and T.P. Russell, J. Am. Chem. Soc. 2006, 128, 12, 3898.
    24.R.D. Deshmukh, Y. Liu, and R.J. Composto, Nano Lett. 2007, 7, 12, 3662.
    25.L. He, L. Zhang, A. Xia, and H. Liang, The Journal of Chemical Physics. 2009, 130, 14, 144907.
    26.A.I. Chervanyov,A.C. Balazs, The Journal of Chemical Physics. 2003, 119, 6, 3529.
    27.M. Aoshima,A. Satoh, Kagaku Kogaku Ronbunshu. 2006, 32, 1, 39.
    28.M. Aoshima,A. Satoh, J Colloid Interf Sci. 2006, 293, 1, 77.
    29.M. Aoshima,A. Satoh, Kagaku Kogaku Ronbunshu. 2007, 33, 2, 77.
    30.A.L. Frischknecht, The Journal of Chemical Physics. 2008, 128, 22, 224902.
    31.R.E. Rosensweig, ed. Ferrohydrodynamics. 1985, Cambridge university press.
    32.Q. Zhang,L.A. Archer, The Journal of Chemical Physics. 2004, 121, 21, 10814.
    33.J. Park, B. Koo, K.Y. Yoon, Y. Hwang, M. Kang, J.-G. Park, and T. Hyeon, J. Am. Chem. Soc. 2005, 127, 23, 8433.
    34.F. Luo, H.-L. Su, W. Song, Z.-M. Wang, Z.-G. Yan, and C.-H. Yan, J Mater Chem. 2004, 14, 1, 111.
    35.B.S. Kim, L. Avila, L.E. Brus, and I.P. Herman, Organic ligand and solvent kinetics during the assembly of CdSe nanocrystal arrays using infrared attenuated total reflection. Vol. 76. 2000: AIP. 3715.
    36.K. Senevirathne, A.W. Burns, M.E. Bussell, and S.L. Brock, Adv Funct Mater. 2007, 17, 18, 3933.
    37.N. Singh, P. Khanna, and P. Joy, J Nanopart Res. 2009, 11, 2, 491.
    38.V. Sharma, K. Park, and M. Srinivasarao, Materials Science and Engineering: R: Reports. 2009, 65, 1-3, 1.
    39.Y.Y. HUI WANG, YUBIN SUN, World Scientific. 2011, 6, 1, 1.
    40.C. Gay, Macromolecules. 1997, 30, 19, 5939.
    41.J.U. Kim,B. O'Shaughnessy, Macromolecules. 2005, 39, 1, 413.

    下載圖示 校內:2012-08-31公開
    校外:2012-08-31公開
    QR CODE