簡易檢索 / 詳目顯示

研究生: 陳凌葦
Chen, Ling-Wei
論文名稱: 以準相位匹配應用於週期性極化鈮酸鋰可見光與紅外光之發光元件
Periodically-Poled Lithium Niobate Devices for Visible and Infrared Light Emissions Based on the Quasi-Phase-Matching Principle
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 55
中文關鍵詞: 週期極化鈮酸鋰準相位匹配和頻
外文關鍵詞: Periodically Poled Lithium Niobate, Quasi-phase matching, Sum frequency generation
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 週期極化鈮酸鋰(PPLN)運用於頻率轉換時,常以二倍頻的方式呈現,當輸出光為可見光時,限制了輸入光源的波長範圍。以和差頻的方式產生光源時,則可使用的輸入光源的波長範圍能增加,本論文以準相位匹配原理,經MATLAB模擬和頻所需要的週期,以1064nm與1550nm為輸入光源,欲得輸出和頻為630nm紅光。
    在製作的部分,先以黃光為影製成定義週期(Λ)之DC(Duty cycle),接著再進行高壓極化的步驟。高壓極化為製作週期穩定度的重要步驟,已知鈮酸鋰之矯頑電場為21kV/mm,在此前先輸入略低於頑強電場18.5 kV/mm次數100次之成核電廠,每次時間100ms,緊接著施加極化電場22.7kV/mm時間為150ms,可得一位符合和頻之週期為11.5μm之週期極化反轉光柵。極化後的鈮酸鋰,利用氫氟酸對鈮酸鋰正負z面與正負y面之蝕刻速率不同,在光學顯微鏡下,分別觀察z切面與y切面之極化與極化的區域的情形。光學繞射法為將蝕刻後的週期性反轉鈮酸鋰至於載台上,以可見光雷射量測,由光點的距離再驗證光柵週期是否吻合。
    在量測結果部分得到的結果為綠光,則反推出在輸入光源在光纖藕何時,因色散效應產生的差頻,與輸入光源和元件上的周期交互影響,並經準相位匹配原理佐證為一致。

    The PPLN (periodically poled lithium niobate) is used for the purpose of frequency conversion and the result shows that SHG (Second Harmonic Generation) of converting 1064 to 532nm is successfully demonstrated. Furthermore, the sum frequency generation (SFG) is also attempted to generate 630nm visible light output by redesigning PPLN to simultaneously accommodate 1550nm signal and 1064nm pumping wavelength as inputs. Unexpectedly a green light output is observed instead, which is further speculated that the final observation is possibly due to the combined influences of a difference-frequency generation (DFG) process and four-wave mixing (FWM) effect.

    目錄 中文摘要 I 英文摘要 III 致謝 VII 目錄 VIII 圖目錄 XII 表目錄 XIV 第一章 序論 1 1.1. 非線性頻率轉換簡介 1 1.2. 準相位匹配週期極化鈮酸鋰反轉研究背景和介紹 2 1.2.1. 在PPLN週期製作質子交換光波導 2 1.2.2. 藉由電子束製作一維與二維微奈米尺寸週期性鈮酸鋰 2 1.2.3. 極化改善之法:藉由數波反向脈衝提升製作PPLN在極化時的良率 4 1.2.4. 表面和差頻技術 6 1.2.5. PPLN:選擇性外加電場之製作方法 6 1.2.6. 極化與波導 7 1.2.7. PPLN與相位旋轉 9 1.2.8. 光學邏輯閘 10 1.2.9. 光參放大器/產生器/震盪器 14 1.2.10. 相位靈敏放大器 15 1.2.11. 紅光中紅外光應用 16 1.3. 常用的非線性材料 17 1.4. 論文架構 17 參考文獻 19 第二章 鈮酸鋰基礎特性 24 2.1導論 24 2.2晶體基本結構 25 2.3光折變效應(photorefractive effect) 26 參考文獻 27 第三章 非線性頻率轉換原理 28 3.1非線性頻率轉換和相位匹配 28 3.2準相位匹配(Quasi phase match) 30 參考文獻 33 第四章 週期性極化反轉鈮酸鋰的設計與製作 34 4.1MATLAB模擬 34 4.1.1晶體週期設計模擬 34 4.1.2轉換效率模擬 35 4.2實驗流程 38 4.2.1清洗基板 39 4.2.2 PECVD沉積SiO2 39 4.2.3黃光微影定義極化區域 39 4.2.4關於極化-高電壓極化物理現象 40 4.2.5高電壓極化反轉 41 4.2.6 HF/HNO3蝕刻 46 4.2.7拋光與研磨 46 參考文獻 48 第五章 量測與討論 49 5.1. 繞射量測 49 5.2. 諧波產生 50 5.3. 討論 52 參考文獻 54 第六章 結論 55 結論 55   圖目錄 圖1.1一維光柵製作流程示意圖 3 圖1.2二維光柵製作示意圖 3 圖1.3二維周期5微米實驗結果 4 圖1.4一組NSP(NEGATIVE SINGLE POLING) 5 圖1.5(A) NMP (B) NSP (C) PSP蝕刻後正負Z面週期狀況 5 圖1.6 表面和差頻示意圖 6 圖1.7 PPLN外加電場示意圖 7 圖1.8金屬擴散波導示意圖 8 圖1.9 TM00、TM01、TM02溫度對轉換效率 9 圖1.10 TM00溫度對轉換效率的影響 9 圖1.11 MZI邏輯閘示意圖 11 圖1.12 MZI之NOR閘示意圖 12 圖1.13 PPLN邏輯閘示意圖 13 圖1.14 PPLN加減器(ADD-SUBTRACTOR)示意圖 14 圖2.1鈮酸鋰晶體切割方向 24 圖2.2 鈮酸鋰原子排列方式 25 圖3.1 同調長度與轉換效率 31 圖3.2輸入頻寬對轉換效率與轉換效率頻寬 32 圖4.1和頻之週期對溫度 34 圖4.2差頻之週期對溫度 35 圖4.3 極化週期比例為50/50 36 圖4.4 極化週期比例為40/60 37 圖4.5 極化週期比例為30/70 37 圖4.6實驗流程圖 38 圖4.7黃光微影 38 圖4.8成核電場示意圖 40 圖4.9成核區域的側擴散連續示意圖 40 圖4.7 載具示意圖 42 圖4.8極化架構圖 42 圖4.9短路未做好之極化情形 44 圖4.10極化正常(上)電場圖(下圖)電流圖 45 圖4.11極化電場對極化電流 45 圖4.12 經HF/HNO3蝕刻後PPLN 46 圖4.13鑽石研磨片和AL2O3絨布墊。 47 圖5.2繞射圖形 50 圖5.3二次諧波產生綠光示意圖 51 圖5.4和頻示意圖 51 表目錄 表1.1 NMP, NSP與PSP之DC(DUTY CYCLE) 4 表1.2極化方向與電場之邏輯意義 13 表1.3非線性材料比較 17 表4.1不同介質之介電值 41 表4.2極化電場與極化電流 45 表5.1繞射量測 50

    [1]P.A. Franken, A.E. Hill, C.W. Peter, and G. Wenireich, "Generation of optical harmonics," Phys. Rev. Lett., vol. 7, 1961.
    [2]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. Lett., vol. 127, 1962.
    [3]M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts , and D. F. Welch, "Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide," IEEE Journal of Quantum Electronics, vol. vol. 30, no. 12, pp. 2953-2960, Dec 1994.
    [4]C. Restoin, S. Massy, C. Darraud-Taupiac, and A. Barthelemy, "Fabrication of 1D and 2D structures at submicrometer scale on lithium niobate by electron beam bombardment," Optical Materials, vol. 22, pp. 193-199, May 2003.
    [5]Ju-Won Choi, Jung-Hoon Ro, Do-Kyeong Ko, and N.-E. Yu, "Poling Quality Enhancement of PPLN Devices Using Negative Multiple Pulse Poling Method," J. Opt. Soc. Korea 15, pp. 182-186, 2011.
    [6]Y. R. Shen, "Basic Theory of Surface Sum-Frequency Generation," J.Phys. , pp. 15505-15509 June 18, 2012.
    [7]Chiaki Hirose, Natoshi Akamatsu, and K. Domen, "Formulas for the Analysis of the Surface SFG Spectrum and transformation coefficients of Cartesian SFG Tensor Component," Appl. Spectro, vol. Vol.46 No.6 1992.
    [8]A. J. Torregrosa, H. Maestre, J. C. Ferrer, S. Fernández de Ávila, and J. Capmany, "Fabrication of selective periodic electrodes in up or down domains for electro-optic control of SHG in PPLN," CLEO, 2014.
    [9]G. I. Stegeman and R. H. Stolen, "Waveguides and fibers for nonlinear optics," J. Opt. Soc. Am. B, vol. Vol. 6, No. 4, pp. 652-656, April 1989.
    [10]J. Amin , V. Pruneri, J. Webjijrn I, P.St.J. Russell, D.C. Hanna, and J. S. Wilkinson, "Blue light generation in a periodically poled Ti: LiNbO3 channel waveguide," Optics Communication, vol. 135, pp. 41-44, February 1997.
    [11]Lu Ming, Corin B. E. Gawith, Katia Gallo, Martin V. O’Connor, Gregory D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass Second harmonic generation in Zn-diffused periodically poled lithium niobate waveguide," OPTICS EXPRESS, vol. Vol. 13, No. 13, 27 June 2005.
    [12]K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, Martin M. Fejer, and Masatoshi Fujimura, "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Opt. Lett.27, pp. 179-181, 2002.
    [13]Yan-Qing Lu, Zhi-Liang Wan, Quan Wang, Yuan-Xin Xi, and N.-B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," APPL PHYS, vol. 77, pp. 3719-3721, DECEMBER 2000.
    [14] Santosh Kumar, Gurdeep Singh, Ashish Bisht, Sandeep Sharma, and A. Amphawan, "Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach-Zehnder interferometers," Appl. Opt, vol. 54, pp. 8479-8484, 2015.
    [15]Haowei Jiang, Yuping Chen, Guangzhen Li, Chuanyi Zhu, and X. Chen, "Optical half-adder and half-subtracter employing the Pockels effect," Opt. Express 23, pp. 9784-9789, 2015.
    [16]Yinxing Zhang, Yuping Chen, and X. Chen, "Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate," APPL PHYS LETTERS vol. 99, p. 161117, 2011.
    [17]R. A. Baumgartner and R. L. Byer, "Optical parametric amplification," IEEE J. Quantum Electron, vol. 15, p. 432, 1979.
    [18]Guang-hao Shao, Xiao-shi Song, Fei Xu, and Y.-q. Lu, "Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3," Opt. Express vol. 20, pp. 19343-19348, 2012.
    [19]R. H. Kingston, "Parametric amplification and oscillation at optical frequencies," Proc. IRE 50, p. 472, 1962.
    [20]A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett., vol. 22, pp. 105-107, 1997.
    [21] A. Piskarskas, "Optical parametric generators: tunable, powerful, ultrafast," Opt. Photon. News 7, vol. 7, p. 25, 1997.
    [22]Shuyan Diao, Jianquan Yao, Yi Zheng, Youfu Geng, Xiaoling Tan, Qiang Liu, et al., "Widely and continuously tunable optical parametric generator based on MgO-doped periodically poled LiNbO3 crystal," Chin. Opt. Lett. , vol. 4, pp. 539-541, 2006.
    [23]J. A. Giordmaine and R. C. Miller, "Tunable coherent parametric oscillation in LiNbO3 at optical frequencies," Phys. Rev. Lett., vol. 14, p. 973, 1965.
    [24]R. G., Batchko, D. R., T. P. Weise, Gregory D. Miller, Martin M. Fejer, et al., "Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate," Opt. Lett., vol. 23, p. 168, 1998.
    [25]K. Streubel , N. Linder , R. Wirth , and A. Jaeger, "High brightness AlGaInP light-emitting diodes," IEEE J SEL TOP QUANT, pp. 321-322, APR 2002.
    [26]Rico Meerheim, Karsten Walzer, Martin Pfeiffer, and Karl Leo, "Ultrastable and efficient red organic light emitting diodes with doped transport layers," Applied Physics Letters,, vol. 89, p. 061111, 2006.
    [27]陳仁智, 陳志楹, 林哲群, "一種可見光通訊系統 A visible light communication system," ICL TECH JOUNAL, p. 101~109, FEB 25,2013.
    [28]Milan M. Milošević, Milos Nedeljkovic, Taha M. Ben Masaud, Ehsan Jaberansary, Harold M. H. Chong, Neil G. Emerson, et al., "Silicon waveguides and devices for the mid-infrared," Appl. Phys. Lett, vol. 101, 2012.
    [29]Rania Gamal, Yehea Ismail, and M. A. Swillam, "Silicon Waveguides at the Mid-Infrared," J. Lightwave Technol., vol. 33, pp. 3207-3214, 2015.
    [30]W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, "Compact blue-green lasers," Cambridge University Press, 2003.
    [31]Koichiro Nakamura, Jonathan Kurz, Krishnan Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J APPL. PHYS., vol. 91 No.7, pp. 4528-4534, APR 2002.
    [32]R.S. Weis and T. K. Gaylord, "Lithium niobate : Summary of physical properties and crystal structure," Appl. Phys.A vol. 37, pp. 191-203, 1985.
    [33]S.O.Kasap, "Optoelectronics and Photonics Principles and Practices," Prentice Hall, Ch7.
    [34]http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3-Wafers.html.
    [35]楊春暉, 孫亮, 冷雪松, 徐超, 范葉霞, 徐玉恒, "光折變非線性光學材料:鈮酸鋰晶體," 科學出版社, 2009.
    [36]張正良, "非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻模態轉換器之研究," 國中央大學光電科學與工程研究所碩士論文, 2008.
    [37]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. Lett., vol. 127, 1962.
    [38]D. M. L. Bortz, "Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides," PhD thesis, Stanford University, 1994.
    [39]Shin Arahira and H. Murai, "Wavelength conversion of incoherent light by sum-frequency generation," Opt. Express vol. 22, pp. 12944-12961, 2014.
    [40]D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne , in congruent lithium niobate," Optics Lett, vol. 22, 1997.
    [41]O. Gayer., Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl Phys B, vol. 91, pp. 343-348, May 2008.
    [42]P. E. Powers, "Fundamentals of Nonlinear Optics," CRC Press 2011.
    [43]G.D. Miller, "Periodically Poled Lithium Niobate : Modeling Fabrication and Nonlinear Optical Performance," Stanford University, PHD Thesis Ch2, 1998.
    [44]Collin L. Sones, Sakellaris Mailis, William S. Brocklesby, Robert W. Eason, and J. R. Owen, "Differemtial etch rates in LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem., pp. 295-298, 2002.
    [45]Krishnamoorthy Pandiyan, Yeon-Suk Kang, Hwan-Hong Lim, Byeong-Joo Kim, Om Prakash, and M.-S. Cha, "Poling Quality Evaluation of Periodically Poled Lithium Niobate Using Diffraction Method," J. Opt. Soc. Korea vol. 12, 2008.
    [46]Min-Ji Jin, Oc-Yeub Jeon, Byeong-Joo Kim, and M. Cha, "Fabrication of Periodically Poled Lithium Niobate Crystal and Poling-Quality Evaluation by diffraction measurement," Journal of the Korean Physical Society, vol. 47, September 2005.
    [47]R. Stolen and J. Bjorkholm, "Parametric amplification and frequency conversion in optical fibers," IEEE Journal of Quantum Electronics,, vol. 18 no. 7, pp. 1062-1072, Jul 1982.

    無法下載圖示 校內:2020-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE