| 研究生: |
陳凌葦 Chen, Ling-Wei |
|---|---|
| 論文名稱: |
以準相位匹配應用於週期性極化鈮酸鋰可見光與紅外光之發光元件 Periodically-Poled Lithium Niobate Devices for Visible and Infrared Light Emissions Based on the Quasi-Phase-Matching Principle |
| 指導教授: |
莊文魁
Chuang, Ricky W. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 週期極化鈮酸鋰 、準相位匹配 、和頻 |
| 外文關鍵詞: | Periodically Poled Lithium Niobate, Quasi-phase matching, Sum frequency generation |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
週期極化鈮酸鋰(PPLN)運用於頻率轉換時,常以二倍頻的方式呈現,當輸出光為可見光時,限制了輸入光源的波長範圍。以和差頻的方式產生光源時,則可使用的輸入光源的波長範圍能增加,本論文以準相位匹配原理,經MATLAB模擬和頻所需要的週期,以1064nm與1550nm為輸入光源,欲得輸出和頻為630nm紅光。
在製作的部分,先以黃光為影製成定義週期(Λ)之DC(Duty cycle),接著再進行高壓極化的步驟。高壓極化為製作週期穩定度的重要步驟,已知鈮酸鋰之矯頑電場為21kV/mm,在此前先輸入略低於頑強電場18.5 kV/mm次數100次之成核電廠,每次時間100ms,緊接著施加極化電場22.7kV/mm時間為150ms,可得一位符合和頻之週期為11.5μm之週期極化反轉光柵。極化後的鈮酸鋰,利用氫氟酸對鈮酸鋰正負z面與正負y面之蝕刻速率不同,在光學顯微鏡下,分別觀察z切面與y切面之極化與極化的區域的情形。光學繞射法為將蝕刻後的週期性反轉鈮酸鋰至於載台上,以可見光雷射量測,由光點的距離再驗證光柵週期是否吻合。
在量測結果部分得到的結果為綠光,則反推出在輸入光源在光纖藕何時,因色散效應產生的差頻,與輸入光源和元件上的周期交互影響,並經準相位匹配原理佐證為一致。
The PPLN (periodically poled lithium niobate) is used for the purpose of frequency conversion and the result shows that SHG (Second Harmonic Generation) of converting 1064 to 532nm is successfully demonstrated. Furthermore, the sum frequency generation (SFG) is also attempted to generate 630nm visible light output by redesigning PPLN to simultaneously accommodate 1550nm signal and 1064nm pumping wavelength as inputs. Unexpectedly a green light output is observed instead, which is further speculated that the final observation is possibly due to the combined influences of a difference-frequency generation (DFG) process and four-wave mixing (FWM) effect.
[1]P.A. Franken, A.E. Hill, C.W. Peter, and G. Wenireich, "Generation of optical harmonics," Phys. Rev. Lett., vol. 7, 1961.
[2]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. Lett., vol. 127, 1962.
[3]M. L. Bortz, S. J. Field, M. M. Fejer, D. W. Nam, R. G. Waarts , and D. F. Welch, "Noncritical quasi-phase-matched second harmonic generation in an annealed proton-exchanged LiNbO3 waveguide," IEEE Journal of Quantum Electronics, vol. vol. 30, no. 12, pp. 2953-2960, Dec 1994.
[4]C. Restoin, S. Massy, C. Darraud-Taupiac, and A. Barthelemy, "Fabrication of 1D and 2D structures at submicrometer scale on lithium niobate by electron beam bombardment," Optical Materials, vol. 22, pp. 193-199, May 2003.
[5]Ju-Won Choi, Jung-Hoon Ro, Do-Kyeong Ko, and N.-E. Yu, "Poling Quality Enhancement of PPLN Devices Using Negative Multiple Pulse Poling Method," J. Opt. Soc. Korea 15, pp. 182-186, 2011.
[6]Y. R. Shen, "Basic Theory of Surface Sum-Frequency Generation," J.Phys. , pp. 15505-15509 June 18, 2012.
[7]Chiaki Hirose, Natoshi Akamatsu, and K. Domen, "Formulas for the Analysis of the Surface SFG Spectrum and transformation coefficients of Cartesian SFG Tensor Component," Appl. Spectro, vol. Vol.46 No.6 1992.
[8]A. J. Torregrosa, H. Maestre, J. C. Ferrer, S. Fernández de Ávila, and J. Capmany, "Fabrication of selective periodic electrodes in up or down domains for electro-optic control of SHG in PPLN," CLEO, 2014.
[9]G. I. Stegeman and R. H. Stolen, "Waveguides and fibers for nonlinear optics," J. Opt. Soc. Am. B, vol. Vol. 6, No. 4, pp. 652-656, April 1989.
[10]J. Amin , V. Pruneri, J. Webjijrn I, P.St.J. Russell, D.C. Hanna, and J. S. Wilkinson, "Blue light generation in a periodically poled Ti: LiNbO3 channel waveguide," Optics Communication, vol. 135, pp. 41-44, February 1997.
[11]Lu Ming, Corin B. E. Gawith, Katia Gallo, Martin V. O’Connor, Gregory D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass Second harmonic generation in Zn-diffused periodically poled lithium niobate waveguide," OPTICS EXPRESS, vol. Vol. 13, No. 13, 27 June 2005.
[12]K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, Martin M. Fejer, and Masatoshi Fujimura, "Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate," Opt. Lett.27, pp. 179-181, 2002.
[13]Yan-Qing Lu, Zhi-Liang Wan, Quan Wang, Yuan-Xin Xi, and N.-B. Ming, "Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications," APPL PHYS, vol. 77, pp. 3719-3721, DECEMBER 2000.
[14] Santosh Kumar, Gurdeep Singh, Ashish Bisht, Sandeep Sharma, and A. Amphawan, "Proposed new approach to the design of universal logic gates using the electro-optic effect in Mach-Zehnder interferometers," Appl. Opt, vol. 54, pp. 8479-8484, 2015.
[15]Haowei Jiang, Yuping Chen, Guangzhen Li, Chuanyi Zhu, and X. Chen, "Optical half-adder and half-subtracter employing the Pockels effect," Opt. Express 23, pp. 9784-9789, 2015.
[16]Yinxing Zhang, Yuping Chen, and X. Chen, "Polarization-based all-optical logic controlled-NOT, XOR, and XNOR gates employing electro-optic effect in periodically poled lithium niobate," APPL PHYS LETTERS vol. 99, p. 161117, 2011.
[17]R. A. Baumgartner and R. L. Byer, "Optical parametric amplification," IEEE J. Quantum Electron, vol. 15, p. 432, 1979.
[18]Guang-hao Shao, Xiao-shi Song, Fei Xu, and Y.-q. Lu, "Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3," Opt. Express vol. 20, pp. 19343-19348, 2012.
[19]R. H. Kingston, "Parametric amplification and oscillation at optical frequencies," Proc. IRE 50, p. 472, 1962.
[20]A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, "Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3," Opt. Lett., vol. 22, pp. 105-107, 1997.
[21] A. Piskarskas, "Optical parametric generators: tunable, powerful, ultrafast," Opt. Photon. News 7, vol. 7, p. 25, 1997.
[22]Shuyan Diao, Jianquan Yao, Yi Zheng, Youfu Geng, Xiaoling Tan, Qiang Liu, et al., "Widely and continuously tunable optical parametric generator based on MgO-doped periodically poled LiNbO3 crystal," Chin. Opt. Lett. , vol. 4, pp. 539-541, 2006.
[23]J. A. Giordmaine and R. C. Miller, "Tunable coherent parametric oscillation in LiNbO3 at optical frequencies," Phys. Rev. Lett., vol. 14, p. 973, 1965.
[24]R. G., Batchko, D. R., T. P. Weise, Gregory D. Miller, Martin M. Fejer, et al., "Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate," Opt. Lett., vol. 23, p. 168, 1998.
[25]K. Streubel , N. Linder , R. Wirth , and A. Jaeger, "High brightness AlGaInP light-emitting diodes," IEEE J SEL TOP QUANT, pp. 321-322, APR 2002.
[26]Rico Meerheim, Karsten Walzer, Martin Pfeiffer, and Karl Leo, "Ultrastable and efficient red organic light emitting diodes with doped transport layers," Applied Physics Letters,, vol. 89, p. 061111, 2006.
[27]陳仁智, 陳志楹, 林哲群, "一種可見光通訊系統 A visible light communication system," ICL TECH JOUNAL, p. 101~109, FEB 25,2013.
[28]Milan M. Milošević, Milos Nedeljkovic, Taha M. Ben Masaud, Ehsan Jaberansary, Harold M. H. Chong, Neil G. Emerson, et al., "Silicon waveguides and devices for the mid-infrared," Appl. Phys. Lett, vol. 101, 2012.
[29]Rania Gamal, Yehea Ismail, and M. A. Swillam, "Silicon Waveguides at the Mid-Infrared," J. Lightwave Technol., vol. 33, pp. 3207-3214, 2015.
[30]W. P. Risk, T. R. Gosnell, and A. V. Nurmikko, "Compact blue-green lasers," Cambridge University Press, 2003.
[31]Koichiro Nakamura, Jonathan Kurz, Krishnan Parameswaran, and M. M. Fejer, "Periodic poling of magnesium-oxide-doped lithium niobate," J APPL. PHYS., vol. 91 No.7, pp. 4528-4534, APR 2002.
[32]R.S. Weis and T. K. Gaylord, "Lithium niobate : Summary of physical properties and crystal structure," Appl. Phys.A vol. 37, pp. 191-203, 1985.
[33]S.O.Kasap, "Optoelectronics and Photonics Principles and Practices," Prentice Hall, Ch7.
[34]http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3-Wafers.html.
[35]楊春暉, 孫亮, 冷雪松, 徐超, 范葉霞, 徐玉恒, "光折變非線性光學材料:鈮酸鋰晶體," 科學出版社, 2009.
[36]張正良, "非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻模態轉換器之研究," 國中央大學光電科學與工程研究所碩士論文, 2008.
[37]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Phys. Rev. Lett., vol. 127, 1962.
[38]D. M. L. Bortz, "Quasi-Phasematched Optical Frequency Conversion in Lithium Niobate Waveguides," PhD thesis, Stanford University, 1994.
[39]Shin Arahira and H. Murai, "Wavelength conversion of incoherent light by sum-frequency generation," Opt. Express vol. 22, pp. 12944-12961, 2014.
[40]D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, ne , in congruent lithium niobate," Optics Lett, vol. 22, 1997.
[41]O. Gayer., Z. Sacks, E. Galun, and A. Arie, "Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3," Appl Phys B, vol. 91, pp. 343-348, May 2008.
[42]P. E. Powers, "Fundamentals of Nonlinear Optics," CRC Press 2011.
[43]G.D. Miller, "Periodically Poled Lithium Niobate : Modeling Fabrication and Nonlinear Optical Performance," Stanford University, PHD Thesis Ch2, 1998.
[44]Collin L. Sones, Sakellaris Mailis, William S. Brocklesby, Robert W. Eason, and J. R. Owen, "Differemtial etch rates in LiNbO3 for variable HF/HNO3 concentrations," J. Mater. Chem., pp. 295-298, 2002.
[45]Krishnamoorthy Pandiyan, Yeon-Suk Kang, Hwan-Hong Lim, Byeong-Joo Kim, Om Prakash, and M.-S. Cha, "Poling Quality Evaluation of Periodically Poled Lithium Niobate Using Diffraction Method," J. Opt. Soc. Korea vol. 12, 2008.
[46]Min-Ji Jin, Oc-Yeub Jeon, Byeong-Joo Kim, and M. Cha, "Fabrication of Periodically Poled Lithium Niobate Crystal and Poling-Quality Evaluation by diffraction measurement," Journal of the Korean Physical Society, vol. 47, September 2005.
[47]R. Stolen and J. Bjorkholm, "Parametric amplification and frequency conversion in optical fibers," IEEE Journal of Quantum Electronics,, vol. 18 no. 7, pp. 1062-1072, Jul 1982.
校內:2020-07-31公開