| 研究生: |
程惟嵩 Cheng, Wei-Song |
|---|---|
| 論文名稱: |
真三軸應力作用下花崗岩破裂面
水力參數之研究 A Study of the Hydraulic Behavior of Single Fracture in Granite Under Tri-Axial Stresses |
| 指導教授: |
王建力
Wang, Jian-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 189 |
| 中文關鍵詞: | 三軸應力 、膨潤土 、立方律 |
| 外文關鍵詞: | cubic law., Bentonite, Tri-Axial Stresses |
| 相關次數: | 點閱:118 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用自行發展的真三軸實驗設備,對含單一平行及傾斜破裂面之花崗岩立方試體進行透水性質之研究。研究中探討人工破裂面受不同圍壓應力作用下流量及水力內寬變化的情形、並利用修正立方律以求取岩體破裂面的透水係數,討論在不同應力控制下與破裂面透水係數的關係,及觀察施加膨潤土前後水力參數的變化行為。
在本研究設定之試驗條件下,所得結論如下:
1.平行破裂面試驗:
(1)應力增加時,覆蓋方向內寬變化量會增加,而透水方向內寬變形則有略減的現象;阻水方向當應力增加及減少時變化較為一致,且各週期的變形量變化也相當小。
(2)應力增加時,覆蓋及透水方向流量會有降低的現象,阻水方向有略為增加的現象;而透水係數在各方向的變化幅度皆不大。
(3)施加膨潤土試體之透水係數較未施加膨潤土試體之透水係數為小。。
2.傾斜破裂面試驗:
(A)剪向應力控制之下
(1)視內寬變形量集中於實驗初始加壓階段,且不會隨剪向應力及加壓、減壓次數的增加而有大幅度的改變。
(2)反覆的加壓、減壓會導致破裂面間之接觸面積增加、流路減少,因此流量及透水係數也會隨之減少。
(3)施加膨潤土試體之透水係數較未施加膨潤土試體之透水係數為小。
(B)正向應力控制之下
(1)視內寬變形量集中於各組之初始加壓階段,而且隨著加壓、減壓次數的增加,其視內寬變形量會增加。
(2)流量及透水係數會隨著正向應力及加壓、減壓次數的增加而減少。
(3)施加膨潤土試體之透水係數較未施加膨潤土試體之透水係數為小。
3.平行與傾斜破裂面試驗之比較:
在四個相同應力路徑的情況下,本研究發現傾斜破裂面試驗所得之水力參數與平行破裂面試驗的結果略有差異,在多數情形下傾斜破裂面所測得之透水係數較大。
This study attempts to measure the hydraulic properties of rock fracture under pressure conditions. Cubic samples of Granite with parallel or inclined fracture have been prepared for the laboratory investigation. The effect of Bentonite has been also studied. The apertures and flow rates under different paths of triaxial compressions were measured. The hydraulic properties were estimated through the modified cubic law. The findings of this study are as following:
1. Parallel fracture:
(1)Increase in overburden pressure increases apparent apertures of rock fracture. Increase in pressure on water flow path reduces apparent apertures of rock fracture. Lateral pressure seems to have little effect on apparent apertures of rock fracture.
(2)Increase in overburden pressure reduces fracture flow. Increase in pressure on water flow path slightly reduces fracture flow. Increase in lateral pressure slightly increases fracture flow.
(3)The measured hydraulic permeabilities for rock fractures without Bentonite are higher than the ones with Bentonite.
2. Inclined fracture:
(A) Under the action of the shear-stress-control:
(1) The net change in deformation mainly occurs at the initial stage. The apparent aperture of rock fracture decreases as the normal stress increases.
(2) As the shear stress and the cyclic actions of loading/unloading increases, the amount of net change in flow rates and hydraulic conductivities decreases.
(3) The measured hydraulic permeabilities for rock fractures without Bentonite are higher than the ones with Bentonite.
(B) Under the action of the normal-stress-control:
(1) The net change in apertures mainly occurs at the initial stage of each normal stress loading. The apparent aperture of rock fracture decreases as the normal stress and the cyclic actions of loading/unloading increases.
(2) As the normal stress and the cyclic actions of loading/unloading increases, the amount of net change in flow rates and hydraulic conductivities decreases.
(4)The measured hydraulic permeabilities for rock fractures without Bentonite are higher than the ones with Bentonite.
3. Comparison of parallel and inclined rock fracture:
The hudraulic conductivities measured from the inclined rock fracture are higher than the ones from the parallel rock fracture.
1. Barton, N., Bandis, S. and Bakhtar, K., Strength, deformation and conductivity coupling of rock joints, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 22, No. 3, pp. 121~140, 1985.
2. Bear, J., Dynamic of fluids in porous media, Elsevier, New York, pp. 132~136, 1988.
3. Chen, Z., Narayan, S. P., Yang, Z. and Rahman, S. S., An experimental investigation of hydraulic behaviour of fractures and joints in granitic rock, Int. J. Rock Mech. & Min. Sci., Vol. 37, pp. 1061~1071, 2000.
4. Gale, J. E., A numerical, field and laboratory study of flow in rocks with deformable fractures, Ph. D. Thesis, University of California, Berkeley, 1975.
5. Gangi, A. F., Variation of whole and fractured porous rock permeability with confining pressure, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, pp. 249~257, 1978.
6. Gerald, C. F. and Wheatley, P. O., Applied numerical analysis, Addison Wesley Longman, Massachusetts, pp. 264~268, 1999.
7. Iwai, K., Fundamental studies of fluid flow through a single fracture, Ph. D. Thesis, University of California, Berkeley, 1976.
8. Jones, F. O., A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks, J. Petrol. Technol., pp. 21~27, 1975.
9. Kranz, R. L., Frankle, S. D., Engelder, T. and Scholz, C. H., The permeability of whole and jointed Barre granite, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 16, pp. 225~234, 1979.
10. Lardner, T. J. and Archer R. R., Mechanics of solids, McGraw-Hill, New York, pp. 542~545, 1994.
11. Makurat, A., Ahola, M., Khair, K., Noorishad, J., Rosengren, L. and Rutqvist, J., The DECOVALEX test-case one, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 32, No 5, pp. 399~408, 1995.
12. Mott, R. L., Applied fluid mechanics, Maxwell Macmillan, New York, pp. 219~229, 1994.
13. Munson, B. R., Young, D. F. and Okiishi, T. H., Fundamentals of fluid mechanics, John Wiley & Son, New York, pp. 853, 1998.
14. Tsang, Y. W. and Witherspoon, P. A., Hydromechanical behavior of a deformable rock fracture subject to normal stress, Journal of Geophysical Research, Vol. 86, No. B10, pp. 9287~9298, 1981.
15. Walsh, J. B., Effects of pore pressure and confining pressure on fracture permeability, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 18, pp. 429~435, 1981.
16. Witherspoon, P. A., Wang, J. S. Y., Iwai, K. and Gale, J. E., Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol. 16, No. 6, pp. 1016~1024, 1985.
17. Yeo, I. W., de Freitas, M. H. and Zimmerman, R. W., Effect of shear displacement on the aperture and permeability of a rock fracture, Int. J. Rock Mech. Min. Sci., Vol. 35, No 8, pp. 1051~1070, 1998.
18. 王茂松,「真三軸應力作用下花崗岩破裂面透水性質之研究」, 國立成功大學資源工程研究所碩士論文,2000。
19. 李仁傑,「岩體人工破裂面之立方律適用性探討」, 國立成功大學資源工程研究所碩士論文,1996。
20. 林松興,「岩體破裂面在正應力下之水力參數探討」, 國立成功大學資源工程研究所碩士論文,1994。
21. 林宏奕、李振誥、洪浩原、陳尉平,「應用離散破裂面模式於岩體隧道滲流之研究:以坪林隧道為例」,中國土木水利工程學刊,第14卷,第3期,第429-439頁,2002。
22. 林宏奕、李振誥、莊文壽,「金門地區花崗岩體破裂面參數調查與透水係數推估」,大地工程學術研討會論文集,2003。
23. 黃吉皇,「正向與剪向應力對於花崗岩破裂面透水性質之研究」, 國立成功大學資源工程研究所碩士論文,2001。
24. 黃偉慶、葉佐仁、盧俊鼎,「放射性廢料處置場回填材料之工程性質」,核子科學,第38卷,第2期,第107-118頁,2001。
25. 陳建生、王媛、趙維炳,「鑽孔與岩體裂隙斜交滲流場井流理論與示蹤方法研究」,水利學報,第12期,第43-47頁,1999。
26. 陳榮華、葉義章、林宏奕、李振誥,「岩石單一裂隙之水力參數與傳輸參數探討」,岩盤工程研討會論文集,第533~542頁,2000。
27. 鄭光宏,「真三軸應力作用下岩石人工剪力破裂面透水性質之研究」, 國立成功大學資源工程研究所碩士論文,1999。
28. 劉建宏、蔣立為、歐陽湘,「MODFLOW於裂隙岩體中地下水流模擬之應用」,台電工程月刊,第648期,第105-118頁,2002。