| 研究生: |
謝瑋庭 Hsieh, Wei-Ting |
|---|---|
| 論文名稱: |
銅銀合金不同晶粒尺寸及梯度奈米晶粒結構機械性質之分子動力學模擬 Molecular Dynamics Simulation of Mechanical Properties of Different Grain Sizes and Gradient-Nano-Grain Structure of Copper-Silver Alloy |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 銅銀合金 、晶粒尺寸效應 、梯度晶粒結構 、分子動力學模擬 |
| 外文關鍵詞: | Cu-Ag Alloy, Grain Size Effect, Gradient-Nano-Grain structure, Molecular Dynamics Simulation |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討在奈米尺度下,不同晶粒尺寸製備出的銅銀合金模型受拉伸負載後的機械性質,以及當銅銀合金模型為梯度奈米晶粒結構時,其破壞行為與應變傳播模式的差異。本研究使用分子動力學方法搭配Finnis-Sinclair勢能函數進行數值模擬,均勻與梯度晶粒結構的模型晶粒尺寸為16.97nm、12nm及2.68nm。同時,使用徑向分布函數法(RDF)與共同近鄰原子分析法(CNA)進行模型結構分析,接著對模型進行單軸拉伸試驗,探討材料的機械性質,並觀察材料的變形與破壞機制以及原子結構的相變情形。本研究亦將預裂紋分別置入均勻與梯度晶粒結構的模型中,探討裂紋傳播的差異性。此外,對具有相同條件的純銅金屬與純銀金屬亦進行相同參數設定的拉伸試驗,探討銅銀合金、銅金屬與銀金屬間材料性質的差異。模擬結果顯示,均勻晶粒尺寸的銅銀合金模型中,晶粒尺寸12nm為銅銀合金的H-P關係(Hall-Petch Relationship)轉折點,具有最大的強度,其抗拉極限應力高達1.84GPa。而隨著晶粒尺寸的減小,極限抗拉強度減小,延展性提升,塑性變形越均勻。此外,具有梯度奈米晶粒結構的銅銀合金,受拉伸負載後,原子結構會產生應力引發的相變,從原本的晶態結構轉變成高比例的非晶態結構,導致原始晶粒間存在的晶界不復存在,使得此梯度結構造成的影響較不顯著。另外,觀察裂紋所造成的影響,結果顯示裂紋尖端受拉伸後因塑性變形而發生鈍化,與脆性材料相比擁有較好的抵抗裂紋傳播的能力。綜合以上實驗結果做一總結,不論銅銀合金晶粒結構為何,破壞模式皆為塑性斷裂,延展性極佳,伸長量皆可高達80%以上,且擁有阻擋裂紋傳播的能力,另外,12nm晶粒尺寸為銅銀合金具有最佳極限抗拉強度的晶粒結構尺寸,亦能提高梯度結構的強度。
In this work, the mechanical properties and fracture behaviors of the structures with different grain sizes and Gradient-Nano-Grain (GNG) of Cu50Ag50 alloy were individually investigated under the uniaxial tensile stress. Molecular dynamics (MD) simulation with Finnis-Sinclair (FS) potential was adopted in numerical simulation. Grain sizes of 16.97 nm, 12 nm and 2.68 nm were selected in the samples with the mean grain sizes and GNG structure. Common neighbor analysis (CNA) and radial distribution function (RDF) method were employed for structure identification. Pre-cracked Cu50Ag50 alloy models under uniaxial tensile were also considered to investigate the crack growth and propagation. Simulation results indicate that the maximum strength and the inverse Hall-Petch (H-P) relationship can be observed at the grain size of 12 nm, and the ultimate tensile strength (UTS) is as high as 1.84 GPa. The UTS decreases with the decrease of the mean grain sizes, while the ductility increases and the plastic deformation become more uniform. Moreover, for GNG structure, stress induced phase transformation can be found during uniaxial tensile test. The initial crystalline structure transforms into a high proportion of amorphous structure, and the grain boundaries between the initial grains disappear. The effect of GNG structure on mechanical properties is not significant. Moreover, it was found that the crack tip exhibits blunting due to plastic deformation after the action of uniaxial tensile stress. Therefore, the Cu50Ag50 alloy shows good resistance of crack propagation than other brittle materials.
[1] J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics", The Journal of Chemical Physics, vol. 18, no. 6, pp. 817-829, 1950.
[2] B. J. Alder and T. E. Wainwright, "Studies in molecular dynamics. I. General method", The Journal of Chemical Physics, vol. 31, no. 2, pp. 459-466, 1959.
[3] J. B. Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard, "Dynamics of radiation damage", Physical Review, vol. 120, pp. 1229-1253, 1960.
[4] A. Rahman, "Correlations in the motion of atoms in liquid argon", Physical Review, vol. 136, pp. 405-441, 1964.
[5] G. Ciccotti and W. G. Hoover, "Molecular-dynamics simulation of statistical-mechanical systems", North Holland, pp. 622, 1986.
[6] M. P. Allen and D. J. Tildesley, "Computer simulation of liquids", Oxford, Claredon, 1987.
[7] J. M. Haile, "Molecular dynamics simulation elementary methods", New York: Wiley, 1993.
[8] L. Verlet, "Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules", Physical Review, vol. 159, pp. 98-103, 1967.
[9] R. W. Hockney and J. W. Eastwood, "Computer Simulations Using Particles", CRC Press, 1981.
[10] D. J. Auerbach, W. Paul, A. F. Bakker, C. Lutz, W. E. Rudge, and F. F. Abraham, "A special purpose parallel computer for molecular dynamics: motivation, design, implementation, and application", The Journal of Physical Chemistry, vol. 91, pp. 4881-4890, 1987.
[11] G. S. Grest, B. Dünweg, and K. Kremer, "Vectorized link cell Fortran code for molecular dynamics simulations for a large number of particles", Computer Physics Communications, vol. 51, no. 3, pp. 269-285, 1989.
[12] S. Strehle, J. W. Bartha, and K. Wetzig, "Electrical properties of electroplated Cu(Ag) thin films", Thin Solid Films, vol. 517, no. 11, pp.3320-3325, 2009.
[13] I. Volov, E. Swanson, B. O'Brien, S. W. Novak, R. Boom, K. Dunn, and A. C. West, "Pulse-plating of copper-silver alloys for interconnect applications", Journal of The Electrochemical Society, vol. 159, no. 11, pp. 677-683, 2012.
[14] Y. Sakai, K. Inoue, and H. Maeda, "High-strength and high-conductivity Cu-Ag alloy sheets : New promising conductor for high-field Bitter coils", IEEE Transactions on Magnetics, vol. 30, no. 4, pp. 2114-2117, 1994.
[15] I. B. Szymańska, P. Piszczek, W. Bała, K. Bartkiewicz, and E. Szłyk, "Ag/Cu layers grown on Si(111) substrates by thermal inducted chemical vapor deposition", Surface and Coatings Technology, vol. 201, no. 22-23, pp. 9015-9020, 2007.
[16] M. Z. Wei, L. J. Xu, J. Shi, G. J. Pan, Z. H. Cao, and X. K. Meng, "Achieving high strength and high electrical conductivity in Ag/Cu multilayers", Applied Physics Letters, vol. 106, no. 1, pp. 011604, 2015.
[17] B. B. Zhang, N. R. Tao, and K. Lu, "A high strength and high electrical conductivity bulk Cu-Ag alloy strengthened with nanotwins", Scripta Materialia, vol. 129, pp. 39-43, 2017.
[18] J. Hsieh and S. Hung, "The effect of Cu:Ag atomic ratio on the properties of sputtered Cu–Ag alloy thin films", Materials, vol. 9, no. 11, pp. 914, 2016.
[19] P. H. Sung and T. C. Chen, "Material property analysis of amorphous metallic thin films as diffusion barrier layer", Computer Science and Engineering, pp. 231-235, 2018.
[20] Nizing Electric Wires & cables. [Online]. Available: http://www.nizing.com.tw/agcu.aspx.
[21] W. H. Jiang, F. X. Liu, Y. D. Wang, H. F. Zhang, H. Choo, and P. K. Liaw, "Comparison of mechanical behavior between bulk and ribbon Cu-based metallic glasses", Materials Science and Engineering, vol. 430, no. 1-2, pp. 350-354, 2006.
[22] Y. Shi and M. L. Falk, "Atomic-scale simulations of strain localization in three-dimensional model amorphous solids", Physical Review B, vol. 73, no. 21, pp. 214201, 2006.
[23] F. F. Wu, Z. F. Zhang, S. X. Mao, A. Peker, and J. Eckert, "Effect of annealing on the mechanical properties and fracture mechanisms of a Zr_56.2 Ti_13.8 Nb_5.0 Cu_6.9 Ni_5.6 Be_12.5 bulk-metallic-glass composite", Physical Review B, vol. 75, no. 13, pp. 134201, 2007.
[24] R. Witte, T. Feng, J. X. Fang, A. Fischer, M. Ghafari, R. Kruk, R. A. Brand, D. Wang, H. Hahn, and H. Gleiter, "Evidence for enhanced ferromagnetism in an iron-based nanoglass", Applied Physics Letters, vol. 103, no. 7, pp. 073106, 2013.
[25] A. Moitra, "Grain size effect on microstructural properties of 3D nanocrystalline magnesium under tensile deformation", Computational Materials Science, vol. 79, pp. 247-251, 2013.
[26] B. Zhu, M. Huang, and Z. Li, "Brittle to ductile transition of metallic glasses induced by embedding spherical nanovoids", Journal of Applied Physics, vol. 122, no. 21, pp. 215108, 2017.
[27] K. Lu, "Making strong nanomaterials ductile with gradients", Science, vol. 345, no. 6203, pp. 1455-1456, 2014.
[28] Z. Yin, X. Yang, X. Ma, J. Moering, J. Yang, Y. Gong, Y. Zhu, and X. Zhu, "Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment", Materials and Design, vol. 105, pp. 89-95, 2016.
[29] W. Li, F. Yuan, and X. Wu, "Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure", AIP Advances, vol. 5, pp. 087120, 2015.
[30] P. Wang, X. Yang and X. Tian, "Fracture behavior of precracked nanocrystalline materials with grain size gradients", Journal of Materials Research, vol. 30, no. 5, pp. 709-716, 2015.
[31] K. Zhou, T. Zhang, B. Liu, and Y. Yao, "Molecular dynamics simulations of tensile deformation of gradient nano-grained copper film", Computational Materials Science, vol. 142, pp. 389-394, 2018.
[32] J. E. Jones, "On the determination of molecular fields", Proceedings of the Royal Society A, vol. 738, pp. 441-462, 1924.
[33] P. M. Morse, "Diatomic molecules according to the wave mechanics", Physical Review, vol. 34, no. 1, pp. 57-64, 1929.
[34] M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Physical Review B, vol. 29, pp. 6443-6453, 1984.
[35] M. W. Finnis and J. E. Sinclair, "A simple empirical N-body potential for transition metals", Philosophical Magazine A, vol. 50, pp. 45-55, 1984.
[36] J. Tersoff, "New empirical model for the structural properties of silicon", Physical Review Letters, vol. 56, pp. 632-635, 1986.
[37] F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B, vol. 48, pp. 22-33, 1993.
[38] M. J. Klein, "The physics of J. Willard Gibbs in his time", Proceedings of the Gibbs Symposium, 1989.
[39] D. H. Tsai, "The virial theorem and stress calculation in molecular dynamics", The Journal of Chemical Physics, vol. 70, no. 03, pp. 1375-1382, 1979.
[40] F. Shimizu, S. Ogata, and J. Li, "Theory of shear banding in metallic glasses and molecular dynamics calculations", Materials Transactions, vol. 48, no. 11, pp. 2923-2927, 2007.
[41] P. Hirel, "Atomsk: A tool for manipulating and converting atomic data files", Computer Physics Communications, vol. 197, pp. 212-219, 2015.
[42] E. O. Hall, "The deformation and ageing of mild steel: III discussion of results", Physical Society B, vol. 64, no. 9, pp. 747-753, 1951.
[43] A. P. Sutton and J. Chen, "Long-range Finnis–Sinclair potentials", vol. 61, no. 3, pp. 139-146, 1989.
[44] A. Stukowski, "Structure identification methods for atomistic simulations of crystalline materials", Modelling and Simulation in Materials Science and Engineering, vol. 20, pp. 045021, 2012.
[45] W. Ramberg and W. R. Osgood, "Description of stress-strain curves by three parameters", NASA Technical Reports Server, NACA Technical Note No. 902, pp. 1-22, 1943.
[46] 唐仁政和田榮璋, "二元和金相圖及中間相晶體結構", 中南大學出版社, 2009.
[47] H. W. Huang, Z. B. Wang, J. Lu and K. Lu, “Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer”, Acta Materialia, vol. 87, pp.150-160, 2015.