簡易檢索 / 詳目顯示

研究生: 林啟豪
Lin, Chi-Hao
論文名稱: 複合圓錐層殼熱應力分析
Thermal stresses analysis of composite laminated circular conical shells
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 54
中文關鍵詞: 複合材料圓錐殼廣義微分數值法
外文關鍵詞: GDQ, Circular Conical Shells, Composite Material
相關次數: 點閱:132下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以三維彈性力學理論為基礎,藉由微擾法推導出複合圓錐層殼之CST-type三維漸近解析理論,進行異向性複合圓錐層殼受熱場作用下之熱應力分析。
    CST-type三維漸近解析理論是將三維彈性力學方程式予以重新組合,以位移場及橫向應力場為主要變數,消去平面應力場;將基本方程作適當之無因次化並對場量變數漸近展開。經上述變換後三維彈性方程式可分離出不同階數且層次分明之微分控制方程組;利用遞迴方式,循序的將各微分方程式沿厚度方向進行連續積分,可推導得各階位移及應力之二維控制方程式。由低階微分方程求得之各場場量,為高階微分方程之求解依據,如此逐階循環修正即可求得收斂之精確解。其中傳統古典理論即為此漸近理論之首階近似解。
    文中配合廣義微分近似數值法,引用正規化條件,將中曲面模態位移場正規化,使所求得之各階場量皆為唯一解;並由三維漸近解評估古典殼理論與一階剪力變形理論在複合圓錐層殼熱應力分析之適用性。

    none

    摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 緒論 1 1.1 研究動機 1 1.2 研究內容 3 第二章 三維彈性漸近解析理論 4 2.1 三維彈性方程式 4 2.2 無因次化 9 2.3 漸近展開 11 2.4 逐次積分 13 第三章 應用問題解析 19 3.1 應用範例 19 3.2 CST-TYPE三維漸近解析理論 20 第四章 廣義微分數值法(GDQ) 23 第五章 數值範例與比較 25 5.1 正交複合圓柱層殼 25 5.2 正交複合圓錐層殼 27 第六章 結論 28 參考文獻 29 附錄A 31 附錄B 33 附錄C 35 附錄D 37 表 40 圖 46

    [1] Reddy, J. N.: A review of refined theories of laminated composite plates, Shock Vibration Digest. 22, 3-17 (1990).

    [2] Reddy, J. N.: Exact solution of moderatively thick laminated shells. J. Engng. Mesh, ASCE 110, 794-808 (1984).

    [3] Khdeir, A. A., Reddy, J. N. and Frederick, D. M.: A study of bending, vibration and buckling of cross-ply circular cylindrical shells with various shell theories. Int. J. Engng. Sci. 27, 1337-1351 (1989).

    [4] Reddy, J. N., and Liu, C. F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Engng. Sci. 23, 319-330 (1985).

    [5] Librescu, L., Khdeir, A. A. and Frederick, D. M.: A shear deformable theory of laminated composite shallow shell-type panels and their response analysis I: free vibration and buckling. Acta Mech. 76, 1-33 (1989).

    [6] Wu, C. P., Tarn, J. Q. and Chi, S. M.: Three-dimensional analysis of doubly curved laminated shells. Int. J. Solids Struct. 33, 3813-3841 (1996b).

    [7] Bellman, R. and Casti, J.: Differential quadrature and long-term integration. J. Math. Appl. 34, 235-238 (1971).

    [8] Bellman, R., Kashef, B. G. and Casti, J: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comp. Physics. 10, 40-52 (1972).

    [9] Shu, C. and Richards, B. E.: Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 15, 791-798 (1992).

    [10] Wu, C. P., Tarn, J. Q. and Chen, P. Y.: Refined asymptotic theory of doubly curved laminated shells. J. Engng. Mech, ASCE 123, 1238-1246 (1997a).

    [11] Wu, C. P. and Hung, Y. C.: Asymptotic theory of laminated circular conical shells. Int. J. Engng. Sci. 37, 977-1005 (1999).

    [12] Tong, L. and Wang, T. K.: Simple solution for buckling of laminated conical shells. Int. J. Mech. Sci.. 34, 93-111 (1992).

    [13] Khideir, A. A.: Thermoelastic analysis of cross-ply laminated circular cylindrical shells. Int. J. Solids Struct. 33, 4007-4017 (1996)

    下載圖示 校內:2003-07-16公開
    校外:2003-07-16公開
    QR CODE