簡易檢索 / 詳目顯示

研究生: 楊允祺
Yang, Yun-Ci
論文名稱: 多孔性瀝青混凝土之工程性質
Engineering Properties of Porous Asphalt Concrete
指導教授: 陳建旭
Chen, Jian-Shiu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 162
中文關鍵詞: 多孔隙瀝青混凝土水侵害比消散潛變能限度潛變柔量
外文關鍵詞: Porous Asphalt Concrete(PAC), Moisture Damage Ratio(MDR), Dissipated Creep Strain Energy Limit(DCSEf), Creep Compliance
相關次數: 點閱:114下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多孔性瀝青混凝土(porous asphalt concrete, PAC)為由高比例的粗粒料所組成,使降於鋪面上的水可經由大量的孔隙迅速排除,避免於鋪面上形成水膜或逕流,可降低行車打滑與水花飛濺的現象,相對提升行車安全。PAC含15%以上的孔隙率,加上台灣特殊的氣候環境,使PAC有機會長期處於潮濕狀態。故本研究採用固定之PAC配比設計結果,配合三種不同瀝青黏結料:AR-8000、高黏度和改質III型瀝青,拌製PAC試體,並浸泡於60℃水中:0、1、3和7天。試體於浸水條件作用後進行工程性質試驗:間接張力試驗、靜態潛變試驗、動態潛變試驗、輪跡試驗和回彈模數試驗,評估不同浸水條件作用對PAC混合料之影響。
    本研究定義浸水前後之工程性質比為水侵害比。根據結果顯示,在未浸水的狀況下,三種混合料的間接張力相近。浸水1天的條件作用後,AR-8000混合料之間接張力下降為未浸水之0.8倍、改質III型混合料為0.86倍、高黏度混合料為0.89倍。而浸水3、7天的條件作用皆呈現相同之趨勢,高黏度混合料有較高的水侵害比、改質III型次之、AR-8000為較低。此外根據間接張力與回彈模數試驗定義消散潛變能;動、靜態潛變試驗定義潛變柔量;輪跡試驗,比較浸水前後之水侵害比,皆呈現與間接張力相符之趨勢。綜合各項結果,高黏度與改質III型混合料之抗水侵害能力較佳,AR-8000混合料較差。而添加防剝劑能有效改善AR-8000混合料抗水侵害之車轍績效。

    Porous asphalt concrete is an alternative to traditional hot mix asphalt and is produced by eliminating the fine aggregate from the asphaltmix. Rain that falls on the friction course drains through the porous layer to the original impervious road surface at which point the water drains along the boundary between the pavement types until the runoff emerges at the edge of the pavement. Porous asphalt concrete overlays are used to improve drivability in wet weather conditions and to reduce noise from highway traffic. The void space in porous asphalt concrete overlay layer generally is 15-25%. Taiwan special climatic environment, enables porous asphalt concrete to have the opportunity to be at the moist condition for a long time. This research uses the same porous asphalt concrete mix design result, coordinates three kind of different asphalt to make the mixture: AR-8000 asphalt, high viscosity asphalt and modified III asphalt. And soaks mixtures in water on 60℃ several days: 0, 1, 3 and 7 days. Mixtures after the immersion condition function carries on the project experiment: The indirect tensile test, the static creep test, the dynamic creep test, the track test, and the resilient modulus test, to appraise the different immersion condition function to influence of the porous asphalt concrete mixture.

    This ratio of parameters affected by moisture conditioning to the control state is referred to moisture damage ratio. Demonstrated according to the result that without immersion condition, three kind of mixture's indirect tensile are close. After immersing 1 day-long condition function, the indirect tensile of AR-8000 asphalt mixture drop is 0.8 time, the indirect tensile of modified III asphalt mixture drop is 0.86 time, the indirect tensile of high viscosity asphalt mixture drop is 0.89 time. And immerses 3, 7 day-long condition functions to present the same tendency, the high viscosity asphalt mixture has the higher moisture damage ratio, and the AR-8000 asphalt mixture has the lower moisture damage ratio. Other test result all presents the same tendency. Synthesizes each result, the high viscosity asphalt mixture and modified III asphalt mixture are highly resistant to moisture damage, and AR-8000 asphalt is lowly. In addition antistrip additive was effective to decrease the moisture damage in AR-8000 asphalt mixture.

    摘要……………………………………………………………………………I 誌謝………………………………………………………………………….IV 目錄…………………………………………………………………………..V 表目錄………………………………………………………………………XII 圖目錄……………………………………………………………………..XIV 第一章 緒論…………………………………………………………….1-1 1.1前言……………………………………………………………….1-1 1.2研究動機………………………………………………………….1-2 1.3研究目的………………………………………………………….1-3 1.4研究範圍………………………………………………………….1-3 第二章 文獻回顧……………………………………………………….2-1 2.1多孔性瀝青混凝土……………………………………………….2-1 2.1.1多孔性瀝青混凝土之組成…………………………………..2-2 2.1.1.1級配規格………………………………………………..2-3 2.1.1.2粒料……………………………………………………..2-4 2.1.1.3黏結料…………………………………………………..2-5 2.1.1.4纖維……………………………………………………..2-5 2.1.1.5填充料…………………………………………………..2-6 2.1.2多孔性瀝青混凝土之特色………………………………..…2-6 2.2多孔性瀝青混凝土材料之品質要求…………………………….2-7 2.2.1瀝青黏結劑……………………………………………..……2-7 2.2.1.1一般瀝青……………………………………………..…2-8 2.2.1.2改質瀝青……………………………………………..…2-9 2.2.2粒料…………………………………………………………2-10 2.2.2.1粗粒料…………………………………………………2-10 2.2.2.2細粒料…………………………………………………2-11 2.2.2.3填充料…………………………………………………2-11 2.2.2.4纖維穩定劑……………………………………………2-12 2.2.3級配…………………………………………………………2-13 2.2.4配合設計試驗值檢驗………………………………………2-14 2.3台灣氣候狀況………………………………………………...…2-15 2.4水分與鋪面系統間之關係………………………………...……2-16 2.4.1水侵害發生之機理行為……………………………………2-16 2.4.2黏結理論(Theories of Adhesion)……………………...…2-19 2.4.3剝脫成因……………………………………………………2-21 2.4.4瀝青薄膜厚度……………………………..…………….…2-23 2.4.5實驗室評估水侵害的方法……………………………..….2-23 2.5水侵害之判定與討論方法………………………………...……2-26 2.5.1環境條件之作用…………………………………..……….2-26 2.5.2力學試驗與討論方法………………………………………2-27 第三章 研究計畫……………………………………..........................3-1 3.1研究方法…………………………………………………….……3-1 3.2試驗材料………………………………………………………….3-4 3.3基本物性試驗………………………………………………….…3-5 3.3.1瀝青黏結劑………………………………………………..…3-5 3.3.1.1比重試驗………………………………………..………3-5 3.3.1.2黏滯度試驗…………………………………………..…3-6 3.3.1.3針入度試驗…………………………………………..…3-6 3.3.2粒料…………………………………………………..………3-6 3.3.2.1篩分析試驗………………………………………..……3-6 3.3.2.2比重及吸水率試驗………………………………..……3-6 3.3.2.3洛杉磯磨損試驗………………………………..………3-7 3.3.2.4鍵性試驗…………………………………………..……3-7 3.4多孔性瀝青混凝土配合設計……………………………….……3-8 3.4.1設計原理……………………………………………..………3-8 3.4.2設計步驟………………………………………………..……3-8 3.5多孔性瀝青混凝土工程性質試驗……………………..….……3-16 3.5.1回彈模數試驗設備與步驟…………………………………3-16 3.5.1.1試驗儀器:電腦控制自動瀝青混合物綜合試驗機…..3-16 3.5.1.2儀器規格………………………………………………3-17 3.5.1.3試體安裝………………………………………………3-18 3.5.1.4實驗步驟………………………………………………3-23 3.5.2間接張力試驗………………………………………………3-29 3.5.3浸水剝脫試驗………………………………………..……3-30 3.5.4穩定值與流度值試驗………………………………………3-31 3.5.5輪跡試驗……………………………………………………3-32 3.5.6未夯壓瀝青拌和料垂流試驗(網籃法 AASHTO T305)…3-34 3.5.7 Cantabro磨耗試驗………………………………………..3-36 3.6分析方法……………………………………………………..….3-38 3.6.1水侵害比………………………………………………..…..3-38 3.6.2消散潛變能…………………………………………………3-39 3.6.3潛變柔量……………………………………………………3-40 第四章 試驗結果分析與討論………………………………………….4-1 4.1材料基本物性試驗……………………………………….………4-1 4.1.1瀝青黏結料基本性質……………………………………..…4-1 4.1.2粒料基本物性試驗…………………………………..………4-3 4.2多孔性瀝青混凝土配合設計……………………….……………4-4 4.2.1選定孔隙率目標值……………………………..……………4-4 4.2.2決定級配………………………………………………..……4-5 4.2.3決定最佳瀝青含量……………………………………..……4-6 4.2.4檢討試驗值…………………………………………..………4-8 4.2.4.1馬歇爾穩定值…………………………………………4-10 4.2.4.2馬歇爾流度值…………………………………………4-11 4.2.4.3浸水剝脫試驗 …………………………………..……4-12 4.2.4.4輪跡試驗………………………………………………4-13 4.2.4.5孔隙率…………………………………………………4-14 4.3回彈模數……………………………………………………...…4-14 4.3.1不同試驗溫度之回彈模數結果分析………………………4-14 4.3.2不同浸水天數之回彈模數結果分析………………..…….4-16 4.4間接張力…………………………………………………..…….4-18 4.4.1 不同試驗溫度之間接張力結果分析………………….….4-18 4.4.2不同浸水天數之間接張力結果分析………………………4-21 4.4.2.1不同浸水天數之間接張力結果…………………...….4-21 4.4.2.2不同浸水天數之間接張力水侵害比結果………...….4-22 4.5消散潛變能…………………………………………………...…4-24 4.5.1不同浸水天數之消散潛應變能限度結果分析……………4-24 4.5.2不同混合料消散潛應變能限度分析………………………4-24 4.5.3不同浸水天數混合料消散潛應變能限度比分析…………4-26 4.5.4對照文獻之結果……………………………………………4-27 4.6靜態潛變………………………………………………...………4-29 4.6.1 不同試驗溫度之靜態潛變結果分析……………………..4-29 4.6.2不同浸水天數之靜態潛變柔量分析…………………..….4-31 4.6.2.1不同浸水天數之靜態潛變柔量結果…………………4-32 4.6.2.2不同浸水天數之靜態潛變柔量水侵害比結果………4-33 4.6.3對照文獻之結果……………………………………………4-34 4.7動態潛變………………………………………………...………4-35 4.7.1 不同試驗溫度之動態潛變結果分析……………………..4-35 4.7.2不同浸水天數之動態潛變柔量分析…………………..….4-37 4.7.2.1不同浸水天數之動態潛變柔量結果…………………4-38 4.7.2.2不同浸水天數之動態潛變柔量水侵害比結果………4-39 4.8輪跡試驗…………………………………………………...……4-40 4.8.1不同浸水天數之輪跡試驗分析……………………………4-40 4.8.2添加防剝劑對AR-8000混合料之車轍績效影響………...4-43 4.9影響PAC鋪面績效之因素及權重…………………………..…4-44 4.9.1現地多孔性鋪面之車轍績效………………………………4-46 4.9.2現地多孔性鋪面之平坦度績效……………………………4-49 4.9.3現地多孔性鋪面之抗滑度績效……………………………4-50 4.9.4現地多孔性鋪面之環境噪音績效…………………………4-51 4.10掃描式電子顯微鏡………………………………….…………4-52 第五章 結論與建議…………………………………………………….5-1 5.1結論……………………………………………………………….5-1 5.2建議……………………………………………………………….5-3 參考文獻…………………………………………………….……………參-1 附錄……………………………………………………………………….附-1

    工程會施工綱要規範 (2009) 多孔隙瀝青混凝土鋪面,台灣。
    日本道路協會 (1999) 排水性鋪裝技術指針(案),日本。
    方楷逸 (2002) 改質瀝青應用於排水級配之抗水侵害研究,國立成功大學土木工程研究所碩士論文,台南。
    交通部統計處 (2009a) 台灣地區氣候概況分析,交通部,台北。
    交通部統計處 (2009b) 交通部統計要覽,交通部,台北。
    林志棟 (1985) 瀝青混凝土配合設計及其原理,科技出版社,台北。
    林志棟 (2006) 「高速公路排水路面試鋪工程成效評估研究」,高速公路局,台北。
    桂國福 (1997) 瀝青混凝土抵抗水分侵害之研究,國立成功大學土木研究所,台南。
    楊翔詠 (2000) 水侵害對不同級配種類瀝青混凝土之影響,國立成功大學土木工程研究所碩士論文,台南。
    蔡攀鰲 (1990) 瀝青混凝土,三民書局,台北。
    蔡攀鰲 (2000) 公路工程學,國立成功大學土木系,台南。
    蔡攀鰲 (2002) 「排水性瀝青混凝土國內、外發展概況」,中華鋪面
    工程學會排水瀝青混凝土鋪面特輯,台南,第1-3頁。
    Barrett, M.E., and Shaw, C.B. (2007). “Stormwater Quality Benefits of a Porous Asphalt Overlay,” Transportation Research Board Annual Meeting, Washington, D.C. (on CD-ROM)
    Birgisson, B., Roque, R., and Page, G.C. (2004). “The Use of a Performance-Based Fracture Criterion for the Evaluation of Moisture Susceptibility in Hot Mix Asphalt,” Transportation Research Record: Journal of Transportation Research Board, No.1891, Washington, D.C., pp.51-61.
    Birgisson, B., Roque, R., Page, G.C., and Wang, J. (2007). “Development of New Moisture-Conditioning Procedure for Hot-Mix Asphalt,” Transportation Research Record: Journal of Transportation Research Board, No.2001, Washington, D.C., pp.46-55.
    Burak, S., and Emine, A. (2007). “Effect of Asphalt Thickness on the Moisture Sensitivity Characteristics of Hot-Mix-Asphalt,” Building and Environment, Vol.42, pp.3621-3628.
    Caro, S., Masad, E., Bhasin, A., and Little, D.N. (2008). “Moisture Susceptibility of Asphalt Mixtures, Part 2: Characterisation and Modellimg,” International Journal of Pavement Engineering, Vol. 9, No.2, pp.99-114.
    Chen, X., and Huang, B. (2008). “Evaluation of Moisture Damage in Hot Mix Asphalt Using Simple Performance and Superpave Indirect Tensile Tests,” Construction and Buliding Materials, Vol.22, pp.1950-1962.
    Curtis, C.W., Terrel, R.L., Perry L.M., Al-Swailm. S., and Braanan, C.J. (1991). “Importance of Asphalt-Aggregate Interactions in Adhesion”, Journal of Association of Asphalt Paving Technologists, Vol.60, pp.476-532.
    Heystraeten, G.V., and Moraux, C. (1990). “Ten Years’ Experience of Porous Asphalt in Belgium,” Transportation Research Record: Journal of Transportation Research Board, No.1265, Washington, D.C., pp.34-40.
    Hassam, F. H., Salim AI-Oraimi, and Ramzi T. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol. 17, pp. 416-422.
    Hicks, R.G. (1991). “Moisture Damage in Asphalt Concrete”, National Cooperative Highway Research Program Synthesis of Highway Practice 175.
    Huet, M., Boissoudy, D.E., Gramsammer, J.C., Bauduin, A., and Samanos, J. (1990). “Experiments with Porous Asphalt on the Nantes Test track,” Transportation Research Record: Journal of Transportation Research Board, No.1265, Washington, D.C., pp.54-58.
    John, C.S., and David, E.N. (1988). “Water Sensitivity Test Methods for Asphalt Concrete Mixtures: A Laboratory Comparison,” Transportation Research Record: Journal of Transportation Research Board, No.1171, Washington, D.C., pp.44-50.
    Kandhal, P.S., and Chakraborty, S. (1996). “Effect of Asphalt Binder Film Thickness on Short and Long Term Aging of Asphalt Paving Mixture,” Transportation Research Record: Journal of Transportation Research Board, No.1535, Washington, D.C., pp.83-90.
    Lottman, R.P. (1982).“Laboratory Test Method for Predicting Moisture Induced Damage to Asphalt Concrete,” Transportation Research Record: Journal of Transportation Research Board, No.843, Washington, D.C., pp.88-95.
    Miller, C., Ford, Jr., Phillip, G.M., and Charles, E.O. (1973). ”Quantitative Evaluation of Strpping by the Surface Reaction Test,” Transportation Research Record: Journal of Transportation Research Board, No.515, Washington, D.C., pp.40-54.
    Mohammad, L. N., Negulescu, I. I., Wu, Z., Daranga, C., Daly, W. H., and Abadie, C. (2003). “Investigation of The Use of Recycled Polymer Modified Asphalt Binder in Asphalt Concrete Pavements,” Journal of Association of Asphalt Paving Technologists, Vol.72, pp.551-594.
    Nakanishi, H. Asano, K., and Goto, K. (2000). “Study on Improvement in Durability of Porous Asphalt Concrete,” Proceeding of Road Engineering and Association of Asian and Australasia, Tokyo, Japan. (on CD-ROM)
    Panda, M. and Mazumdar, M. (1999). "Engineering Properties of EVA-Modified Bitumen Binder for Paving Mixes," Journal of Materials in Civil Engineering, Vol.11, pp.131-137.
    Parker, F., and Wilson, M.S. (1986). “Evaluation of Boiling and Stress Pedestal Tests for Assessing Stripping Potential of Alabama Asphalt Concrete Mixtures,” Transportation Research Record: Journal of Transportation Research Board, No.1096, Washington, D.C., pp.90-99.
    Petersen, J.C., Plancher, H., Ensley, E.K., Venable, R.L., and Miyake, G. (1982). “Chemistry of Asphalt-Aggregate Interaction:Relationship with Pavemenrt Moisture-Damage Prediction Test,” Transportation Research Record: Journal of Transportation Research Board, No.843, Washington, D.C., pp.95-104.
    Plancher, H., Dorrence, S.M., and Petersen, J.C. (1977). “Identification of Chemical Types in Asphalts Strongly Adsorbed at the Asphalt-Aggregate Interface and Their Relative Displacement by Water,” Journal of Association of Asphalt Paving Technologists, Vol.46, pp.151-175.
    Ruiz, A., Alberola, R., Perez, F., and Sanchez, B. (1990). “Porous
    Asphalt Mixtures in Spain,” Transportation Research Record: Journal of Transportation Research Board, No.1260, Washington, D.C., pp.87-94.
    Scherocman, J.A., Mesch, K.A. and Proctor, J.J. (1983). “The Effect of Multiple Freeze-Thaw Cycle Conditioning on the Moisture Damage in Asphalt Concrete Mixtures,” Journal of Association of Asphalt Paving Technologists, Vol.55, pp.213-236.
    Tunnicliff, D.G., and Root, R.E. (1983). ”Testing Asphalt Concrete for Effectiveness of Antistripping Additives,” Journal of Association of Asphalt Paving Technologists, Vol.52, pp.535-560.
    Wen, H., and Bahia, H. (2009). “Characterizing Fatigue of Asphalt Binders Using Viscoelastic Continuum Damage Mechanics,” Transportation Research Board Annual Meeting, Washington, D.C. (on CD-ROM)
    Yoon, H. H., and Tarrer, A. R. (1988). “Effect of Aggregate Properties on Stripping,” Transportation Research Record: Journal of Transportation Research Board, No.1171, Washington, D.C., pp.37-43.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE