簡易檢索 / 詳目顯示

研究生: 陳威辰
Chen, Wei-Chen
論文名稱: 端銑刀刃口幾何對系統穩定性影響之研究
Effect of Cutting Edge Geometry on Stability in End Milling
指導教授: 王俊志
Wang, Jiunn-Jyh Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 端銑加工刃口幾何切削常數系統穩定性
外文關鍵詞: end-milling, cutting edge geometry, cutting coefficient, system stability
相關次數: 點閱:94下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要探討端銑刀之刃口幾何包括刀尖半徑、傾角、隙角對切削常數的影響及其與切削穩定性及製程阻尼之關聯。首先利用兩種銑削力模式:剪切綜合效應模式及剪切與犂切雙效應模式,進行剪切與犂切切削常數之探討。透過銑削實驗求得不同刃口幾何之Al6061-T6材料的切削常數。實驗結果發現,當刀尖半徑越大時其剪切與犂切切削常數也會越大。而當傾角越大時,剪切切削常數則會變小。此外,隙角越大時刀腹摩擦減少使犁切切削常數變小。
    接著進行切削穩定性之分析,發現除比切削能影響外,主要為刃口幾何改變加工時之製程阻尼。實驗結果發現較大刃尖半徑及較小隙角皆會增加製程阻尼因而提升系統整體阻尼,使極限切深隨轉速下降向上偏移因而提升低速時之切削穩定性。

    This study investigated the effect of cutting edge geometry ,included cutting edge geometry, rake angle and clearance angle on the stability of end-milling. At first, considerate two milling force model called Lumped Global Cutting Constant (LGCC) and Dual-mechanism Global Cutting Constant (DGCC) milling force model to discuss the relationship between the tangential cutting coefficient and the plowing cutting coefficient. Then, calculate the cutting coefficients on Al6061-T6 material from experimental data. The experimental results revealed that the cutting edge geometry influences the cutting coefficients. The larger cutting edge radius leads to larger cutting force and cutting coefficient. The cutting force and cutting coefficients decrease when the rake angle increases. Chatter study is based on the average milling force model in investigating machining stability with dynamic milling system model. The results show the cutting edge geometry not only affects cutting energy but also changes the process damping. The larger cutting edge radius and the smaller clearance angle increase the process damping and enhance the system stability especially at lower speed. Also, larger edge radius and smaller clearance angle increase process damping and enhance the system stability.

    中文摘要 I Abstract II 致謝 IX 總目錄 X 圖目錄 XIV 表目錄 XVIII 符號說明 XIX 第一章 1 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 2 1.2.1銑削力模式文獻回顧 2 1.2.2銑削加工穩定性與刃口幾何之相關文獻 4 1.3研究範疇及論文架構 6 1.3.1 研究範疇 6 第二章 7 端銑削之銑削力模式 7 2.1前言 7 2.2銑削座標系統 7 2.3局部銑削力模式 10 2.3.1 剪切綜合效應(LGCC)之局部銑削力模式 12 2.3.2 剪切及犂切雙效應(DGCC)之局部銑削力模式 12 2.4總銑削力 14 2.4.1 屑寬密度函數 14 2.4.2 刀刃序列函數 15 2.4.3 角度域之總銑削力 16 2.3.4總銑削力之頻域轉換 18 2.4.5切削常數計算方式 19 第三章 21 銑削穩定性之分析 21 3.1前言 21 3.2 動態銑削模式 21 3.3銑削顫震預測 26 3.4 顫震軌跡 29 第四章 31 實驗結果與討論 31 4.1前言 31 4.2 實驗設備與配置 32 4.2.1實驗設備及規格 32 4.2.2實驗設備配置 33 4.2.3實驗刀具與材料 34 4.2.4 實驗量測儀器之校正 39 4.3 結構參數辨識實驗 39 4.4 不同刃口幾何刀具之切削常數實驗 46 4.4.1切削常數實驗規劃 46 4.4.2第一組刀具實驗結果 47 4.4.3第二組切削常數實驗結果 51 4.4.4模擬與實驗力量比對 54 4.4.5切削常數實驗結果與討論 57 4.5 切削穩定性實驗與顫震軌跡 58 4.5.1前言 58 4.5.2切削穩定性之判斷 58 4.5.3顫震軌跡實驗 64 第五章 73 結論與建議 73 5.1結論 73 5.2建議 74 參考文獻 75

    [1] Afazov, S. M., Ratchev, S. M. and Segal, J., (2010), " Modeling and simulation of micro-milling cutting forces, " Journal of Materials Processing Technology, Vol. 210, pp. 2154-2164.
    [2] Afazov, S. M., Ratchev, S. M. ,Segal J and Popov A.A.,(2011),”Chatter modeling in micro-milling by considering process nonlinearities” International Journal of Machine Tool & Manufacture,Vol 56,pp28-38
    [3] Afazov, S.M., Zdebski D., Ratchev S. M., Segal J., Liu S., (2013), " Effects of micro-milling conditions on the cutting forces and process stability, " International Journal of Machine Tool & Manufacture, Vol 213, pp. 671-684
    [4] Bao, W. Y. and Tansel, I. N., (2000), " Modeling Micro-End-Milling Operations, Part I: Analytical Cutting Force Model, " International Journal of Machine Tool & Manufacture, Vol. 40, No. 15, pp. 2155~2174
    [5] Biermann, D., Baschin, A., (2009), " Influence of cutting edge geometry and cutting edge radius on the stability of micromilling processes, " Production Engineering 3: 375–380.
    [6] Budak, E., Altintas, Y., and Armarego E. J. A. , 1998, “Prediction of Milling Force Coefficients From Orthogonal cutting Data, “ ASME Journal of Manufacturing Science and Engineering, Vol. 118, pp. 216-224.
    [7] Dan, I.,Mathew, J.,1990,“Tool wear and monitoring techniques for turning-a review,” Int. J. Mach. Tools Manuf. Vol.30, pp.579-598.
    [8] Erhan Budak and Yusuf Altintas (1994), “Peripheral milling conditions for improved dimensional accuracy,” International Journal of Machine Tools & Manufacture, Vol. 34, pp. 907-918.
    [9] Geoffrey, B., 1975,“Fundamentals of Metal Machining and Machine Tools, 2nd printing,” CENTRAL BOOK COMPANY at Taipei, Taiwan.
    [10] Huang, C. Y.,Wang, J. J. Junz, (2007), “Mechanistic Modeling of Process Damping in Peripheral Milling,” Journal of Manufacturing Science and Engineering FEBRUARY, Vol. 129 pp.12-20.
    [11] Huang, C. Y.,Wang, J. J. Junz, (2009), “Mode coupling behavior in end milling,” In ASME International Mechanical Engineering Congress and Exposition (pp. 875-884). American Society of Mechanical Engineers, 2009. p. 875-884.
    [12] Jemielniak, K., and Widota, A., 1989, “Numerical Simulation of Non-linear Chatter Vibration in Turning,” Int. J. Mach. Tools Manuf., Vol. 29, pp. 239–247.
    [13] Kline, W. A., Devor, R. E., Snareef, I. A., (1982), " The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts, " International Journal of Machine Tool Design and Research, Vol. 22, No. 1, pp. 7-22.
    [14] Kline, W. A. DeVor, R. E., and Shareef (1982), I. A., “The prediction of surface accuracy in end milling,” ASME Journal of Engineering for Industry, Vol. 104, pp. 272-278.
    [15] Koenigsberger, F., and Sabberwal, A. J. P.,1961, “An Investigation into the Cutting Force Pulsations During Milling Operations, “International Journal of Machine Tool Design and Research, Vol. 1, pp. 15-33.
    [16] Lee, S. W., Mayor, R. and Ni, J., (2006), " Dynamic Analysis of a Mesoscale Machine Tool, " ASME, J. Manufacturing Science and Engineering, Vol. 128, pp. 194-203.
    [17] Martellotti, M. E., 1941, “An Analysis of the Milling Process, “Transaction of ASME, Vol. 63, pp.677-700.
    [18] Martellotti, M. E., 1945, “An Analysis of the Milling Process, Part 2: Down Milling, “Transaction of ASME, Vol. 67, pp. 233-251.
    [19] Melkote, S. N. and Endres, W. J., (1998), " The Importance of Including Size Effect When Modeling Slot Milling, " ASME Journal of Manufacturing Science and Engineering, Vol. 120, pp. 69-75.
    [20] Minis I. and Yanushevsky, R., (1993), “A new theoretical approach for prediction of machine tool chatter in milling, " ASME Journal of Manufacturing Science and Engineering, Vol. 115, no. 1, pp. 1-8.

    [21] Montgomery,D.,and Altintas, Y., 1991, “Mechanism of Cutting Force and Surface Generation in Dynamic Milling,” ASME J. Eng. Ind., 113, pp. 160168.
    [22] Park, H.W. and Liang, S. Y., (2007), " Analysis of The Scale Effect for Microscale Machine Tools, " International Manufacture Science And Engineering Conference, Atlanta, Georgia, USA, pp. 1-8.
    [23] Rahnama R., Sajjadi M. and Simon S.,(2009),” Chatter suppression in micro end milling with process damping,” Journal of Materials Processing Technology, Vol. 209,pp 5766-5776
    [24] Ryu, S. H., Lee, H. S. and Chu, C. N., (2003), " The form error prediction in side wall machining considering tool deflection, " International Journal of Machine Tools and Manufacture, Vol. 43, pp. 1405-1411.
    [25] Sabberwal, A. J. P., 1961, “Chip Section and Cuting Force During the Milling Operation, “Annals of the CIRP, Vol. 10, pp. 197-203.
    [26] Schulz, H. and Moriwaki, T., (1992), " High-Speed Machining, " Annals of the CIRP, vol. 41, p.637.
    [27] Tarng, Y. S., Young, H. T., and Lee, B. Y., 1992, “An Analytical Model of Chatter Vibration in Metal Cutting,” Int. J. Mach. Tools Manuf., Vol. 34, pp.183–197.
    [28] Tlusty, J., and Ismail, F., 1983, “Special Aspects of Chatter in Milling,” ASMEJ. Eng. Ind.,Vol. 105, pp. 24–32.
    [29] Tlusty, J., and MacNeil, P. , 1975, “Dynamics of Cutting Forces in End Milling, “CIRP annals, Vol. 24, pp. 21-25.
    [30] Tobias, S.A., and Fishwick, W.W.,1958, “Theory of Regenerative Machine Tool Chatter,”Engineering,205
    [31] Tunc, L. T., and Budak E., (2012), "Effect of cutting conditions and tool geometry on process damping in machining," International Journal of Machine Tools and Manufacture, Vol. 57, pp. 10-19.
    [32] Vogler, M. P., Kapoor, S. G. and DeVor, R. E., (2004), “On the Modelling and Analysis of Machining Performance in Micro-End Milling, Part II:Cutting Force Prediction, “ASME Journal of Engineering for Industry, Vol. 126, pp. 685-694.
    [33] Wang, J. J. and Liang S. Y. and Book W. J. 1994, “Convolution Analysis of Milling Force Pulsation, “ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25.
    [34] Wang, J. J., 1992, Convolution Modeling of Milling Force System and Its Application to Cutter Runout Identification, Ph.D. thesis, School of Mechanical Engineering, Georgia Institute of Technology, April.
    [35] Wang, J. J., and Zheng C. M., 2002, “An analytical force model with shearing and ploughing mechanisms for end milling,” International Journal of Machine Tools & Manufacture, Vol.42, pp.761-771.
    [36] Wang, W., Kweon, S. H. and Yang, S. H., (2005), " A study on roughness of the micro-end-milled surface produced by aminiatured machine tool, " Journal of Materials Processing Technology, Vol. 41, pp. 702-708.
    [37] Weck, Manfred, 1980,“Handbook of Machine Tools,’’ John Wiley & Sons Ltd, pp.60–61.
    [38] Won-Soo Yun, Jeong Hoon Ko (2002), “Development of virtual machining system, part 2: prediction and analysis of a machined surface error,” International Journal of Machine Tools & Manufacture, Vol. 42, pp. 1607-1615.
    [39] Jin, X., and Altintas, Y. (2013). Chatter stability model of micro-milling with process damping. Journal of manufacturing science and engineering, 135(3), 031011.
    [40] Yellowley, I.,1985,“Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process,” International Journal of Machine Tool Design and Research, Vol. 25, No. 4, pp. 337-346.
    [41] ASM Aerospace Specification Metals, Inc.”Material Data Sheet”. Accessed
    July, 2015. http://www.aerospacemetals.com/index.html

    下載圖示 校內:2017-09-11公開
    校外:2018-09-11公開
    QR CODE