簡易檢索 / 詳目顯示

研究生: 劉建嘉
Liu, Jian-Jia
論文名稱: 合成金屬有機骨架-銀奈米立方體複合材料做為二氧化碳還原反應之光觸媒
Synthesis of MOF-Silver Nanocube Composites as Photocatalysts for CO2 reduction reaction
指導教授: 許蘇文
Hsu, Su-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 107
中文關鍵詞: 電漿子奈米晶體金屬有機框架光觸媒二氧化碳還原反應
外文關鍵詞: plasmonic nanocrystals, metal-organic frameworks, photocatalysts, CO2 reduction
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們以銀奈米立方體作為模板,藉由調整調節劑與金屬有機框架前驅物濃度,能夠控制金屬有機框架於銀奈米立方體上形成的速率,並且生成兩種不同形貌的金屬有機框架-銀奈米立方體複合材料:(1) 殼層狀金屬有機框架-銀奈米立方體複合材料 (2) 角狀金屬有機框架-銀奈米立方體複合材料,並且藉由此兩種形貌之複合材料作為電漿子光觸媒,催化二氧化碳還原反應。兩種形貌之複合材料皆表現出優秀的二氧化碳吸附性(由MOF-801而起)與良好的二氧化碳還原反應性(由銀奈米立方體而起)。以臨場拉曼光譜觀測複合材料於二氧化碳吸附與二氧化碳還原的性能。相較於殼層狀複合材料而言,角狀複合材料擁有更快的二氧化碳吸附速率,這是由於角狀金屬有機框架複合材的比表面積更高導致。而二氧化碳還原的反應速率與反應機制會因為複合材料的形貌不同而改變,這是因為於金屬有機框架與銀奈米立方體介面上的反應環境不同所造成。且金屬有機框架-銀奈米立方體複合材料的二氧化反應速率對光照強度與光照波長之變化相當敏感。這是由於隨著光照強度的上升用於促進反應之熱電子之數量增加與隨著光照波長之變化熱電子分布位置於銀奈米立方體會產生改變所造成。藉由此合成法生成非均質複合材料可被用於設計並合成出各式不同形態及組成的複合材料以適用於各式催化反應之光觸媒。

    Here, we fabricated two different heterogenous nanocomposites, core-shell MOF-AgNC and corner MOF-AgNC, as photocatalysts for CO2 conversion by generating metal-organic frameworks (MOFs) on silver nanocube templates. These MOF-AgNC nanocomposites showed high adsorbability (due to MOF-801) and high reactivity (due to AgNC). The performances of these MOF-AgNC nanocomposites in CO2 adsorption and CO2 reduction reactions can be characterized by in-situ Raman spectrum measurement. The corner MOF-AgNC nanocomposite exhibited a faster CO2 adsorption rate than the core-shell MOF-AgNC nanocomposite, which was due to the higher surface area/volume ratio of MOF in corner MOF-AgNC. The CO2 reaction reactivity and mechanisms (products of the reaction) of CO2 reduction depended on the morphologies of MOF-AgNC nanocomposites, which were caused by different reaction environments at the interface between MOF and AgNC. The CO2 reduction reactivity of MOF-AgNC nanocomposites also exhibited high sensitivity to irradiation intensity and wavelength, which was caused by the variation of the number of hot electrons in AgNC and their positions in AgNC with light intensity and light wavelength, respectively. This method for the synthesis of heterogenous nanocomposites should be possible to design excellent photocatalysts for various reactions by carefully designing the morphology and composition of nanocomposites.

    中文摘要 I 英文延伸摘要 II 致謝 XVI 目錄 XVII 表目錄 XX 圖目錄 XXII 第1章 緒論 1 第2章 材料與實驗方法 14 2-1實驗藥品 14 2-2儀器設備 15 2-3實驗步驟 18 2-3-1奈米晶體-高分子複合材料之合成 18 2-3-1-1奈米立方體粒子之合成 18 2-3-1-2銀奈米立方體粒子之純化 19 2-3-2基材表面塗佈高分子 20 2-3-2-1基材表面改質 20 2-3-2-2基材表面塗佈聚苯乙烯 20 2-3-3製備有機金屬框架-銀奈米立方體複合材料 20 2-3-3-1接枝PVP的銀奈米立方體陣列部分嵌入聚苯乙烯薄膜中 20 2-3-3-2銀奈米立方體表面配體之改質 21 2-3-3-3於銀奈米立方體表面合成有機金屬框架 22 2-3-3-4角狀有機金屬框架銀奈米立方體複合材料合成 22 2-3-3-5 殼層-有機金屬框架奈米晶體複合材料合成 23 2-3-4以臨場拉曼觀測金屬有機框架奈米晶體複合材料之二氧化碳還原反應 23 2-3-4-1二氧化碳吸附及脫附測量 24 2-3-4-2以臨場拉曼對二氧化碳還原測量 25 第3章 結果與討論 26 3-1金屬有機框架-奈米立方體複合材料之合成與物性分析 26 3-1-1 銀奈米立方體粒子之合成與分析 26 3-1-2 銀奈米立方體表面配體改質之結果分析 29 3-1-3金屬有機框架-奈米立方體複合材料之合成結果分析 34 3-1-3-1金屬有機框架前驅物濃度對合成之響應 34 3-1-3-2 反應液之酸鹼值(乙酸濃度)對於合成之影響 39 3-1-3-3電漿子誘導電磁場對合成之影響 41 3-1-3-4 金屬有機框架-銀奈米立方體複合材料之鑑定 44 3-2 金屬有機框架-銀奈米立方體複合材料用作二氧化碳還原之光觸媒 50 3-2-1殼層狀金屬有機框架-奈米立方體複合材料於光照下之二氧化碳還原反應之探討 50 3-2-1-1 二氧化碳吸、脫附之量測 50 3-2-1-2 電漿子誘導電磁場強度對二氧化碳還原反應之影響 55 3-2-1-3 電漿子誘導電磁場位置對二氧化碳還原反應之影響 71 3-2-2角狀金屬有機框架-奈米立方體複合材料於光照下之二氧化碳還原反應之探討 74 3-2-2-1 二氧化碳吸附、脫附之量測 74 3-2-2-2 激發光強度對二氧化碳還原反應之影響 80 3-2-2-3 激發光波長對二氧化碳還原反應之影響 95 第4章 結論 99 第5章 參考文獻 101

    1. Ferey, G., Hybrid Porous Solids: Past, Present, Future. Chemical Society Reviews 2008, 37 (1), 191-214.
    2. Fuchs, A.; Mannhardt, P.; Hirschle, P.; Wang, H. Z.; Zaytseva, I.; Ji, Z.; Yaghi, O.; Wuttke, S.; Ploetz, E., Single Crystals Heterogeneity Impacts the Intrinsic and Extrinsic Properties of Metal-Organic Frameworks. Advanced Materials 2022, 34 (3).
    3. Aijaz, A.; Karkamkar, A.; Choi, Y. J.; Tsumori, N.; Ronnebro, E.; Autrey, T.; Shioyama, H.; Xu, Q., Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework: A Double Solvents Approach. Journal of the American Chemical Society 2012, 134 (34), 13926-13929.
    4. Campbell, M. G.; Dinca, M., Metal-Organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors 2017, 17 (5).
    5. Yao, J. F.; Wang, H. T., Zeolitic Imidazolate Framework Composite Membranes and Thin Films: Synthesis and Applications. Chemical Society Reviews 2014, 43 (13), 4470-4493.
    6. Zornoza, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F., Metal Organic Framework Based Mixed Matrix Membranes: An Increasingly Important Field of Research with a Large Application Potential. Microporous and Mesoporous Materials 2013, 166, 67-78.
    7. Chanut, N.; Wiersum, A. D.; Lee, U. H.; Hwang, Y. K.; Ragon, F.; Cheyreau, H.; Bourrelly, S.; Kuchta, B.; Chang, J. S.; Serre, C.; Llewellyn, P. L., Observing the Effects of Shaping on Gas Adsorption in Metal Organic Frameworks. European Journal of Inorganic Chemistry 2016, (27), 4416-4423.
    8. Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q., Metal-Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion. Energy & Environmental Science 2015, 8 (7), 1837-1866.
    9. Li, W. H.; Wu, X. F.; Han, N.; Chen, J. Y.; Tang, W. X.; Chen, Y. F., Core-shell Au@ZnO Nanoparticles Derived from Au@MOF and Their Sub-ppm Level Acetone Gas-sensing Performance. Powder Technology 2016, 304, 241-247.
    10. Gao, J.; Mao, H. Z.; Jin, H.; Chen, C.; Feldhoff, A.; Li, Y. S., Functionalized ZIF-7/Pebax (R) 2533 Mixed Matrix Membranes for CO2/N2 separation. Microporous and Mesoporous Materials 2020, 297.
    11. Seoane, B.; Coronas, J.; Gascon, I.; Benavides, M. E.; Karvan, O.; Caro, J.; Kapteijn, F.; Gascon, J., Metal-Organic Framework Based Mixed Matrix Membranes: a Solution for Highly Efficient CO2 Capture? Chemical Society Reviews 2015, 44 (8), 2421-2454.
    12. Chen, K.; Xu, K.; Xiang, L.; Dong, X.; Han, Y.; Wang, C. Q.; Sun, L. B.; Pan, Y. C., Enhanced CO2/CH4 Separation Performance of Mixed-Matrix Membranes Through Dispersion of Sorption-selective MOF Nanocrystals. Journal of Membrane Science 2018, 563, 360-370.
    13. Biswas, S.; Van der Voort, P., A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2 Adsorption Properties. European Journal of Inorganic Chemistry 2013, (12), 2154-2160.
    14. Wissmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A. M.; Behrens, P., Modulated Synthesis of Zr-fumarate MOF. Microporous and Mesoporous Materials 2012, 152, 64-70.
    15. Sun, J. J.; Li, Q. Q.; Chen, G. N.; Duan, J. G.; Liu, G. P.; Jin, W. Q., MOF-801 Incorporated PEBA Mixed-Matrix Composite Membranes for CO2 Capture. Separation and Purification Technology 2019, 217, 229-239.
    16. Ganesh, M.; Hemalatha, P.; Peng, M. M.; Cha, W. S.; Jang, H. T., Zr-Fumarate MOF a Novel CO2-Adsorbing Material: Synthesis and Characterization. Aerosol and Air Quality Research 2014, 14 (6), 1605-1612.
    17. Wang, Y.; Li, L. J.; Yan, L. T.; Cao, L.; Dai, P. C.; Gu, X.; Zhao, X. B., Continuous Synthesis for Zirconium Metal-Organic Frameworks with High Quality and Productivity via Microdroplet Flow Reaction. Chinese Chemical Letters 2018, 29 (6), 849-853.
    18. Loza, K.; Heggen, M.; Epple, M., Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Advanced Functional Materials 2020, 30 (21).
    19. Muskens, O.; Christofilos, D.; Del Fatti, N.; Vallee, F., Optical Response of a Single Noble Metal Nanoparticle. Journal of Optics a-Pure and Applied Optics 2006, 8 (4), S264-S272.
    20. Nedyalkov, N.; Koleva, M. E.; Nikov, R.; Stankova, N. E.; Iordanova, E.; Yankov, G.; Aleksandrov, L.; Iordanova, R., Tuning Optical Properties of Noble Metal Nanoparticle-Composed Glasses by Laser Radiation. Applied Surface Science 2019, 463, 968-975.
    21. Yu, C. L.; Cao, F. F.; Li, G.; Wei, R. F.; Yu, J. C.; Jin, R. C.; Fan, Q. Z.; Wang, C. Y., Novel noble metal (Rh, Pd, Pt)/BiOX(Cl, Br, I) Composite Photocatalysts with Enhanced Photocatalytic Performance in Dye Degradation. Separation and Purification Technology 2013, 120, 110-122.
    22. Zhang, Y. J.; Huang, R.; Zhu, X. F.; Wang, L. Z.; Wu, C. X., Synthesis, Properties, and Optical Applications of Noble Metal Nanoparticle-Biomolecule Conjugates. Chinese Science Bulletin 2012, 57 (2-3), 238-246.
    23. Ziashahabi, A.; Ghodselahi, T.; Saani, M. H., Comparison between Stability, Electronic and Structural Properties of Noble Metal Nanoclusters. Journal of Nanoparticle Research 2013, 15 (8).
    24. Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J., Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Letters 2013, 13 (1), 240-247.
    25. Hou, W. B.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B., Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catalysis 2011, 1 (8), 929-936.
    26. Yu, S. J.; Wilson, A. J.; Heo, J.; Jain, P. K., Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. Nano Letters 2018, 18 (4), 2189-2194.
    27. Lee, J.; Mubeen, S.; Ji, X. L.; Stucky, G. D.; Moskovits, M., Plasmonic Photoanodes for Solar Water Splitting with Visible Light. Nano Letters 2012, 12 (9), 5014-5019.
    28. Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H., The Effect of Gold Loading and Particle Size on Photocatalytic Hydrogen Production from Ethanol over Au/TiO2 Nanoparticles. Nature Chemistry 2011, 3 (6), 489-492.
    29. Christopher, P.; Xin, H. L.; Linic, S., Visible-Light-Enhanced Catalytic Oxidation Reactions on Plasmonic Silver Nanostructures. Nature Chemistry 2011, 3 (6), 467-472.
    30. Vanaja, M.; Paulkumar, K.; Baburaja, M.; Rajeshkumar, S.; Gnanajobitha, G.; Malarkodi, C.; Sivakavinesan, M.; Annadurai, G., Degradation of Methylene Blue Using Biologically Synthesized Silver Nanoparticles. Bioinorganic Chemistry and Applications 2014, 2014.
    31. Kumari, G.; Zhang, X. Q.; Devasia, D.; Heo, J.; Jain, P. K., Watching Visible Light-Driven CO2 Reduction on a Plasmonic Nanoparticle Catalyst. ACS Nano 2018, 12 (8), 8330-8340.
    32. Tao, A. R.; Habas, S.; Yang, P. D., Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4 (3), 310-325.
    33. Avci-Camur, C.; Perez-Carvajal, J.; Imaz, I.; Maspoch, D., Metal Acetylacetonates as a Source of Metals for Aqueous Synthesis of Metal-Organic Frameworks. ACS Sustainable Chemistry & Engineering 2018, 6 (11), 14554-14560.
    34. Garg, S.; Li, M. R.; Weber, A. Z.; Ge, L.; Li, L. Y.; Rudolph, V.; Wang, G. X.; Rufford, T. E., Advances and Challenges in Electrochemical CO2 Reduction Processes: an Engineering and Design Perspective Looking beyond New Catalyst Materials. Journal of Materials Chemistry A 2020, 8 (4), 1511-1544.
    35. Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K., A Highly Selective Copper-Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO2 to CO. Angewandte Chemie-International Edition 2015, 54 (7), 2146-2150.
    36. Naldoni, A.; Shalaev, V. M.; Brongersma, M. L., Applying Plasmonics to a Sustainable Future. Science 2017, 356 (6341), 908-909.
    37. Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J., Photodetection with Active Optical Antennas. Science 2011, 332 (6030), 702-704.
    38. Yang, Z.; Han, X. M.; Lee, H. K.; Phan-Quang, G. C.; Koh, C. S. L.; Lay, C. L.; Lee, Y. H.; Miao, Y. E.; Liu, T. X.; Phang, I. Y.; Ling, X. Y., Shape-Dependent Thermo-Plasmonic Effect of Nanoporous Gold at the Nanoscale for Ultrasensitive Heat-Mediated Remote Actuation. Nanoscale 2018, 10 (34), 16005-16012.
    39. Cottat, M.; Thioune, N.; Gabudean, A. M.; Lidgi-Guigui, N.; Focsan, M.; Astilean, S.; de la Chapelle, M. L., Localized Surface Plasmon Resonance (LSPR) Biosensor for the Protein Detection. Plasmonics 2013, 8 (2), 699-704.
    40. Kim, Y.; Smith, J. G.; Jain, P. K., Harvesting Multiple Electron-Hole Pairs Generated through Plasmonic Excitation of Au Nanoparticles. Nature Chemistry 2018, 10 (7), 763-769.
    41. Kim, Y.; Torres, D. D.; Jain, P. K., Activation Energies of Plasmonic Catalysts. Nano Letters 2016, 16 (5), 3399-3407.
    42. Kim, Y.; Wilson, A. J.; Jain, P. K., The Nature of Plasmonically Assisted Hot -Electron Transfer in a Donor-Bridge-Acceptor Complex. ACS Catalysis 2017, 7 (7), 4360-4365.
    43. Jiao, J. L.; Wan, J. Q.; Ma, Y. W.; Wang, Y., Facile Formation of Silver Nanoparticles as Plasmonic Photocatalysts for Hydrogen Production. RSC Advances 2016, 6 (107), 106031-106034.
    44. Yin, X. L.; Li, L. L.; Jiang, W. J.; Zhang, Y.; Zhang, X.; Wan, L. J.; Hu, J. S., MoS2/CdS Nanosheets-on-Nanorod Heterostructure for Highly Efficient Photocatalytic H-2 Generation under Visible Light Irradiation. ACS Applied Materials & Interfaces 2016, 8 (24), 15258-15266.
    45. Thompson, T. L.; Yates, J. T., Monitoring Hole Trapping in Photoexcited TiO2(110) using a Surface Photoreaction. Journal of Physical Chemistry B 2005, 109 (39), 18230-18236.
    46. Westrich, T. A.; Dahlberg, K. A.; Kaviany, M.; Schwank, J. W., High-Temperature Photocatalytic Ethylene Oxidation over TiO2. Journal of Physical Chemistry C 2011, 115 (33), 16537-16543.
    47. Moon, S. W.; Ha, J. W., Single-Particle Correlation Study: Chemical Interface Damping Induced by Biotinylated Proteins with Sulfur in Plasmonic Gold Nanorods. Physical Chemistry Chemical Physics 2019, 21 (13), 7061-7066.
    48. Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S., Singular Characteristics and Unique Chemical Bond Activation Mechanisms of Photocatalytic Reactions on Plasmonic Nanostructures. Nature Materials 2012, 11 (12), 1044-1050.
    49. Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. Journal of the American Chemical Society 2014, 136 (11), 4369-4381.
    50. Wu, W. B.; Wang, J. C.; Zhang, T. Y.; Jiang, S.; Ma, X. Y.; Zhang, G. H.; Zhang, X.; Chen, X. W.; Li, B., Controllable Synthesis of Ag/AgCl@MIL-88A via In Situ Growth Method for Morphology-Dependent Photocatalytic Performance. Journal of Materials Chemistry C 2019, 7 (18), 5451-5460.
    51. Liu, C.; Wang, J.; Wan, J. J.; Yu, C. Z., MOF-on-MOF Hybrids: Synthesis and Applications. Coordination Chemistry Reviews 2021, 432.
    52. Liu, B.; Shioyama, H.; Jiang, H. L.; Zhang, X. B.; Xu, Q., Metal-Organic Framework (MOF) as a Template for Syntheses of Nanoporous Carbons as Electrode Materials for Supercapacitor. Carbon 2010, 48 (2), 456-463.
    53. Koh, C.; Sim, O.; Leong, S. X.; Boong, S. K.; Chong, C. R. C.; Ling, X. Y., Plasmonic Nanoparticle-Metal-Organic Framework (NP-MOF) Nanohybrid Platforms for Emerging Plasmonic Applications. ACS Materials Letters 2021, 3 (5), 557-573.
    54. Tsuruoka, T.; Kawasaki, H.; Nawafune, H.; Akamatsu, K., Controlled Self-Assembly of Metal-Organic Frameworks on Metal Nanoparticles for Efficient Synthesis of Hybrid Nanostructures. ACS Applied Materials & Interfaces 2011, 3 (10), 3788-3791.
    55. Smith, W. E., Practical Understanding and Use of Surface Enhanced Raman Scattering/Surface Enhanced Resonance Raman Scattering in Chemical and Biological Analysis. Chemical Society Reviews 2008, 37 (5), 955-964.
    56. Ma, Y.; Du, Y. Y.; Chen, Y.; Gu, C. J.; Jiang, T.; Wei, G. D.; Zhou, J., Intrinsic Raman Signal of Polymer Matrix Induced Quantitative Multiphase SERS Analysis Based on Stretched PDMS Film with Anchored Ag Nanoparticles/Au Nanowires. Chemical Engineering Journal 2020, 381.
    57. Li, B.; Fu, J. Z.; Feng, J. W.; Shang, C.; Lin, Z. W., Review of Heterogeneous Material Objects Modeling in Additive Manufacturing. Visual Computing for Industry Biomedicine and Art 2020, 3 (1).
    58. Li, G. L.; Cherqui, C.; Bigelow, N. W.; Duscher, G.; Straney, P. J.; Millstone, J. E.; Masiello, D. J.; Camden, J. P., Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS. Nano Letters 2015, 15 (5), 3465-3471.
    59. Stewart, A.; Zheng, S.; McCourt, M. R.; Bell, S. E. J., Controlling Assembly of Mixed Thiol Mono layers on Silver Nanoparticles to Tune Their Surface Properties. ACS Nano 2012, 6 (5), 3718-3726.
    60. Moran, C. H.; Rycenga, M.; Zhang, Q.; Xia, Y. N., Replacement of Poly(vinyl pyrrolidone) by Thiols: A Systematic Study of Ag Nanocube Functionalization by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C 2011, 115 (44), 21852-21857.
    61. Kudelski, A., Raman Study on the Structure of 3-Mercaptopropionic Acid Monolayers on Silver. Surface Science 2002, 502, 219-223.
    62. Polte, J., Fundamental Growth Principles of Colloidal Metal Nanoparticles - a New Perspective. Crystengcomm 2015, 17 (36), 6809-6830.
    63. Pan, Z. W. H.; Wang, K.; Ye, K. H.; Wang, Y.; Su, H. Y.; Hu, B. H.; Xiao, J.; Yu, T. W.; Wang, Y.; Song, S. Q., Intermediate Adsorption States Switch to Selectively Catalyze Electrochemical CO2 Reduction. ACS Catalysis 2020, 10 (6), 3871-3880.
    64. Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G. G.; Jiao, F., A Selective and Efficient Electrocatalyst for Carbon Dioxide Reduction. Nature Communications 2014, 5.
    65. Mazilu, M.; De Luca, A. C.; Riches, A.; Herrington, C. S.; Dholakia, K., Optimal Algorithm for Fluorescence Suppression of Modulated Raman Spectroscopy. Optics Express 2010, 18 (11), 11382-11395.
    66. Chen, L. T.; Lu, H. L.; Ripmeester, J. A., Raman Spectroscopic Study of CO2 in Hydrate Cages. Chemical Engineering Science 2015, 138, 706-711.

    下載圖示 校內:2025-07-22公開
    校外:2025-07-22公開
    QR CODE