簡易檢索 / 詳目顯示

研究生: 李俊翰
Li, Jyun-Han
論文名稱: 高介電係數介電層/矽鍺介面之探討與矽鍺鰭式電晶體之研製
Investigation of High-k Dielectrics/SiGe Interface for SiGe FinFETs Fabrication
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 74
中文關鍵詞: 矽鍺氨電漿二氧化鉿鰭式電晶體
外文關鍵詞: Silicon-germanium, NH3 plasma, HfO2, FinFET
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對不同條件的水表面處理與氨電漿處理,探討對高介電係數介電層 (二氧化鉿)與矽鍺介面的影響。從眾多文獻的比較中,可以發現大部分矽鍺電容的介電層都大於5奈米,隨著介電層厚度減少,矽鍺介面的品質對於電性表現的影響漸漸增加。而本論文為了追求更小的EOT,介電層厚度約3奈米,若要有良好的電性表現,對於矽鍺介面的品質要求更高,因此我在製程中加入氨電漿處理鈍化矽鍺表面。
    氨電漿處理可以在氧化層表面形成一層阻擋層,防止鍺在後續製程擴散進二氧化鉿介電層,同時抑制水氣擴散到矽鍺表面。同時,在高溫的氨電漿處理下,由於反應速率提升,所形成的阻擋層抑制能力較高;另一方面,水表面處理在高溫下因為氧化鍺的擴散,易產生較多介面缺陷。根據實驗結果,在250°C水表面處理與氨電漿的條件下,電容在沉積後退火(500°C,30秒)後,電性上顯示有較小的遲滯現象(約189.67 mV)與等效電容厚度(1.63奈米),且閘極漏電流在閘極電壓為-1 V時,約為1.75×10-5 A/cm2,最後成功應用在鰭式電晶體中。

    In this thesis, we use different conditions of H2O treatment and NH3 plasma treatment to investigate the influence on high-k dielectrics/SiGe interface. In-situ NH3 plasma nitridation has been used to passivate the HfO2/SiGe interfaces and form a diffusion barrier. It is noticed that the diffusion barrier may suppress not only diffusion of GeOx from the semiconductor surface into the gate oxide, but H2O diffuses to the SiGe surface. On the other hand, H2O treatment performed at high temperatures easily create more defects due to the outdiffusion of GeO. According to our experimental results, the nitrided TiN/HfO2/SiGe/Si MOSCAP shows a small C-V hysteresis loop of ~189.67 mV and low capacitance equivalent thickness (CET) of 1.63 nm, and leakage current density (Jg) of ~1.75×10-5 A/cm2 at a gate bias of Vg = -1.0 V. Then, performing on FinFETs.

    中文摘要 I Abstract II 致謝 III Contents V Figure Captions VII Table Captions XII Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Channel materials and multi-gate structure devices 4 1.1.2 Material choice for interfacial layer 9 1.2 Motivation 15 1.3 Organization of the Thesis 18 Chapter 2 Experimental Flow and Equipment 20 2.1 Introduction 20 2.2 Capacitor Fabrication 20 2.2.1 Surface pretreatment 20 2.2.2 Cleaning of the SiGe substrate 21 2.2.3 High-k/metal gate stack 21 2.2.4 Post deposition annealing 22 2.3 Device Fabrication 23 2.3.1 Epitaxial growth of SiGe on SOI substrates 24 2.3.2 Surface pretreatment prior to deposition 24 2.3.3 High-k/metal gate stack 25 2.3.4 Ion implantation and Activation 25 Chapter 3 Results and Discussions 30 3.1 Introduction 30 3.2 Material analyses of SiGe 30 3.2.1 XPS analysis of SiGe 30 3.2.2 AFM analysis of SiGe 33 3.3 Parameters extraction methods 34 3.3.1 Flat band voltage (VFB) and flat band capacitance (CFB) 36 3.3.2 Frequency dispersion (F.D.) 38 3.3.3 Hysteresis (Hys.) 38 3.3.4 Capacitance equivalent thickness (CET) 39 3.3.5 Gate leakage current (Jg) 39 3.4 Electrical characteristics of SiGe MOSCAPs 40 3.4.1 Effect of NH3 plasma treatment on the interfacial property 40 3.4.2 HfO2/Al2O3/SiGe MOSCAPs with H2O treatment 41 3.4.3 HfO2/SiGe MOSCAPs with H2O treatment 48 3.5 Electrical characteristic of SiGe FinFETs 64 Chapter 4 Conclusion & Future Work 68 Reference 70

    [1] C. D. Young, "Enabling Semiconductor Innovation and Growth-EUV lithography drives Moore's law well into the next decade," in APAC TMT Conference, Taipei, Taiwan, March 14, 2018 2018.
    [2] D. A. Neamen, Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill, 2012.
    [3] V. Chan et al., "High speed 45nm gate length CMOSFETs integrated into a 90nm bulk technology incorporating strain engineering," in IEEE International Electron Devices Meeting 2003, 2003: IEEE, pp. 3.8. 1-3.8. 4.
    [4] B. Hoefflinger, "ITRS: The international technology roadmap for semiconductors," in Chips 2020: Springer, 2011, pp. 161-174.
    [5] B. S. Doyle and B. Roberds, "Methodology for control of short channel effects in MOS transistors," ed: Google Patents, 2002.
    [6] S.-H. Oh, D. Monroe, and J. Hergenrother, "Analytic description of short-channel effects in fully-depleted double-gate and cylindrical, surrounding-gate MOSFETs," IEEE electron device letters, vol. 21, no. 9, pp. 445-447, 2000.
    [7] S. Veeraraghavan and J. G. Fossum, "Short-channel effects in SOI MOSFETs," IEEE Transactions on Electron Devices, vol. 36, no. 3, pp. 522-528, 1989.
    [8] K. K. Young, "Short-channel effect in fully depleted SOI MOSFETs," IEEE Transactions on Electron Devices, vol. 36, no. 2, pp. 399-402, 1989.
    [9] M. J. Deen and Z. Yan, "DIBL in short-channel NMOS devices at 77 K," IEEE Transactions on Electron Devices, vol. 39, no. 4, pp. 908-915, 1992.
    [10] P. Heremans, R. Bellens, G. Groeseneken, and H. E. Maes, "Consistent model for the hot-carrier degradation in n-channel and p-channel MOSFETs," IEEE Transactions on Electron Devices, vol. 35, no. 12, pp. 2194-2209, 1988.
    [11] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc, "Design of ion-implanted MOSFET's with very small physical dimensions," IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256-268, 1974.
    [12] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006.
    [13] H.-K. Lim and J. G. Fossum, "Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET's," IEEE Transactions on electron devices, vol. 30, no. 10, pp. 1244-1251, 1983.
    [14] C. A. Mack, "Fifty years of Moore's law," IEEE Transactions on semiconductor manufacturing, vol. 24, no. 2, pp. 202-207, 2011.
    [15] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, "Growth of native oxide on a silicon surface," Journal of Applied Physics, vol. 68, no. 3, pp. 1272-1281, 1990.
    [16] T. Irisawa et al., "High-performance uniaxially strained SiGe-on-insulator pMOSFETs fabricated by lateral-strain-relaxation technique," IEEE Transactions on Electron Devices, vol. 53, no. 11, pp. 2809-2815, 2006.
    [17] L. Yang et al., "Si/SiGe heterostructure parameters for device simulations," Semiconductor Science and Technology, vol. 19, no. 10, p. 1174, 2004.
    [18] O. Weber et al., "Examination of additive mobility enhancements for uniaxial stress combined with biaxially strained Si, biaxially strained SiGe and Ge channel MOSFETs," in 2007 IEEE International Electron Devices Meeting, 2007: IEEE, pp. 719-722.
    [19] W. Cheng, A. Teramoto, M. Hirayama, S. Sugawa, and T. Ohmi, "Impact of improved high-performance Si (110)-oriented metal–oxide–semiconductor field-effect transistors using accumulation-mode fully depleted silicon-on-insulator devices," Japanese journal of applied physics, vol. 45, no. 4S, p. 3110, 2006.
    [20] Y. Song et al., "Performance breakthrough in gate-all-around nanowire n-and p-type MOSFETs fabricated on bulk silicon substrate," IEEE Transactions on Electron Devices, vol. 59, no. 7, pp. 1885-1890, 2012.
    [21] K. J. Kuhn, "CMOS scaling beyond 32nm: Challenges and opportunities," in Proceedings of the 46th Annual Design Automation Conference, 2009: ACM, pp. 310-313.
    [22] X. Huang et al., "Sub-50 nm P-channel FinFET," IEEE Transactions on Electron Devices, vol. 48, no. 5, pp. 880-886, 2001.
    [23] I. Vurgaftman, J. á. Meyer, and L. á. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys," Journal of applied physics, vol. 89, no. 11, pp. 5815-5875, 2001.
    [24] I. Ferain, C. A. Colinge, and J.-P. Colinge, "Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors," Nature, vol. 479, no. 7373, p. 310, 2011.
    [25] R. Rios and N. D. Arora, "Determination of ultra-thin gate oxide thicknesses for CMOS structures using quantum effects," in Proceedings of 1994 IEEE International Electron Devices Meeting, 1994: IEEE, pp. 613-616.
    [26] S.-H. Lo, D. Buchanan, Y. Taur, and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's," IEEE Electron Device Letters, vol. 18, no. 5, pp. 209-211, 1997.
    [27] H. S. Momose, "1.5 nm direct-tunneling gate oxide Si MOSFET's," IEEE Trans. Electron Devices, vol. 43, no. 8, pp. 1233-1242, 1996.
    [28] J. Lee, G. Bosman, K. R. Green, and D. Ladwig, "Model and analysis of gate leakage current in ultrathin nitrided oxide MOSFETs," IEEE Transactions on Electron Devices, vol. 49, no. 7, pp. 1232-1241, 2002.
    [29] G. D. Wilk, R. M. Wallace, and J. Anthony, "High-κ gate dielectrics: Current status and materials properties considerations," Journal of applied physics, vol. 89, no. 10, pp. 5243-5275, 2001.
    [30] B. H. Lee et al., "Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application," in International Electron Devices Meeting 1999. Technical Digest (Cat. No. 99CH36318), 1999: IEEE, pp. 133-136.
    [31] G.-F. Yeap and S. Krishnan, "Fringing-induced barrier lowering (FIBL) in sub-100 nm MOSFETs with high-k gate dielectrics," Electronics Letters, vol. 34, no. 11, pp. 1150-1152, 1998.
    [32] N. R. Mohapatra, M. P. Desai, and V. R. Rao, "Detailed analysis of FIBL in MOS transistors with high-k gate dielectrics," in 16th International Conference on VLSI Design, 2003. Proceedings., 2003: IEEE, pp. 99-104.
    [33] C.-H. Lai, L.-C. Hu, H.-M. Lee, L.-J. Do, and Y.-C. King, "New Stack Gate Insulator Structure-Reduce FIBL Effect Obviously," in 2001 International Symposium on VLSI Technology, Systems, and Applications, 2001: Institute of Electrical and Electronics Engineers, pp. Proceeding-s.
    [34] B.-Y. Tsui and L.-F. Chin, "A comprehensive study on the FIBL of nanoscale MOSFETs," IEEE Transactions on electron devices, vol. 51, no. 10, pp. 1733-1736, 2004.
    [35] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 18, no. 3, pp. 1785-1791, 2000.
    [36] D. G. Schlom and J. H. Haeni, "A thermodynamic approach to selecting alternative gate dielectrics," MRS bulletin, vol. 27, no. 3, pp. 198-204, 2002.
    [37] S. Guha, E. Gusev, M. Copel, L.-Å. Ragnarsson, and D. A. Buchanan, "Compatibility Challenges for High-ĸ Materials Integration into CMOS Technology," MRS bulletin, vol. 27, no. 3, pp. 226-229, 2002.
    [38] S. Thompson et al., "A 90 nm logic technology featuring 50 nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1/spl mu/m/sup 2/SRAM cell," in Digest. International Electron Devices Meeting, 2002: IEEE, pp. 61-64.
    [39] J. Welser, J. Hoyt, and J. Gibbons, "Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors," IEEE Electron Device Letters, vol. 15, no. 3, pp. 100-102, 1994.
    [40] J. Welser, J. Hoyt, S.-I. Takagi, and J. Gibbons, "Strain dependence of the performance enhancement in strained-Si n-MOSFETs," in Proceedings of 1994 IEEE International Electron Devices Meeting, 1994: IEEE, pp. 373-376.
    [41] C. Hobbs et al., "80 nm poly-Si gate CMOS with HfO/sub 2/gate dielectric," in International Electron Devices Meeting. Technical Digest (Cat. No. 01CH37224), 2001: IEEE, pp. 30.1. 1-30.1. 4.
    [42] Y. Liu et al., "Investigation of the TiN gate electrode with tunable work function and its application for FinFET fabrication," IEEE transactions on nanotechnology, vol. 5, no. 6, pp. 723-730, 2006.
    [43] K. Endo et al., "Variability analysis of TiN metal-gate FinFETs," IEEE Electron Device Letters, vol. 31, no. 6, pp. 546-548, 2010.
    [44] W. L. Kalb and B. Batlogg, "Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods," physical review B, vol. 81, no. 3, p. 035327, 2010.
    [45] R. Winter, J. Ahn, P. C. McIntyre, and M. Eizenberg, "New method for determining flat-band voltage in high mobility semiconductors," Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 31, no. 3, p. 030604, 2013.
    [46] W. C. Lee, C. J. Cho, J.-H. Choi, J. D. Song, C. S. Hwang, and S. K. Kim, "Correct extraction of frequency dispersion in accumulation capacitance in InGaAs metal-insulator-semiconductor devices," Electronic Materials Letters, vol. 12, no. 6, pp. 768-772, 2016.
    [47] J. Lin et al., "An investigation of capacitance-voltage hysteresis in metal/high-k/In0. 53Ga0. 47As metal-oxide-semiconductor capacitors," Journal of Applied Physics, vol. 114, no. 14, p. 144105, 2013.
    [48] J. Franco et al., "SiGe channel technology: Superior reliability toward ultrathin EOT devices—Part I: NBTI," IEEE Transactions on Electron Devices, vol. 60, no. 1, pp. 396-404, 2012.
    [49] K. Sardashti et al., "Nitride passivation of the interface between high-k dielectrics and SiGe," Applied Physics Letters, vol. 108, no. 1, p. 011604, 2016.
    [50] T. Yu, C. Jin, Y. Yang, L. Zhuge, X. Wu, and Z. Wu, "Effect of NH3 plasma treatment on the interfacial property between ultrathin HfO2 and strained Si0. 65Ge0. 35 substrate," Journal of Applied Physics, vol. 113, no. 4, p. 044105, 2013.
    [51] S. Wang, J. Chai, J. Pan, and A. Huan, "Thermal stability and band alignments for Ge 3 N 4 dielectrics on Ge," Applied physics letters, vol. 89, no. 2, p. 022105, 2006.
    [52] J. Huheey, E. Keiter, and R. Keiter, "Inorganic chemistry: principles of structure and reactivity, 4th edn, chap 9, Acid—base chemistry," ed: Harper Collins College Publ, NY, 1993.
    [53] O. Renault et al., "High-resolution photoelectron spectroscopy of Ge-based Hf O 2 gate stacks," Applied physics letters, vol. 90, no. 5, p. 052112, 2007.
    [54] M. Ortiz et al., "Formation of SiGe Nanoparticles by Dry and Steam Thermal Oxidation of Thin Polycrystalline Layers," MRS Online Proceedings Library Archive, vol. 737, 2002.
    [55] F. Rozé et al., "Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation," Journal of Applied Physics, vol. 121, no. 24, p. 245308, 2017.
    [56] G. He, M. Liu, L. Zhu, M. Chang, Q. Fang, and L. Zhang, "Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (1 0 0)," Surface Science, vol. 576, no. 1-3, pp. 67-75, 2005.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE