| 研究生: |
陳柏豪 Chen, Bo-hau |
|---|---|
| 論文名稱: |
使用極化分集編解碼器於波導光柵光分碼多工接取網路以抑制相位雜訊 Phase Noise Suppression with Polarization Diversity Codecs over Waveguide-Grating-Based Optical CDMA Networks |
| 指導教授: |
黃振發
Huang, Jen-fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 多重擷取干擾 、相位引致強度雜訊 、陣列波導光柵 、光分碼多重存取 、極化分集 、頻譜極化編碼 |
| 外文關鍵詞: | optical code-division multiple access (OCDMA), multiple access interference (MAI), arrayed-waveguide grating (AWG), spectral-polarization coding (SPC), polarization diversity, phase-induced intensity noise (PIIN) |
| 相關次數: | 點閱:230 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用光可於單模光纖中以兩個互相正交極化狀態傳輸的特性,我們提出一個架構於極化分光器(Polarization beam splitter, PBS)與陣列波導光柵 (Arrayed-waveguide grating, AWG) 之光分碼多重存取 (Optical code-division multiple-access, OCDMA) 編/解碼裝置,利用極化分集(Polarization diversity)的概念以實現非同調光源之頻域極化編碼 (Spectral-polarization coding, SPC)。系統使用者的簽章碼 (Signature code)是以Walsh-Hadamard矩陣來建構。且根據傳送位元的不同 (1 or 0),指派的簽章碼將搭配一組相反的正交極化狀態。
在解碼端,由於所接收到的訊號包含不同波長的極化狀態資訊,因此先以AWG取出相對應於編碼機制的波長,再以PBS分離正交的極化狀態,最後以雙重平衡差異檢測來判別使用者所傳送的資訊。由於Walsh-Hadamard矩陣為正交矩陣,使得多重擷取干擾 (Multiple access interference, MAI) 理論上可被完全消除。再者,SPC機制相較於同樣以Walsh-Hadamard碼架構之頻域振幅編碼系統,更能有效的抑制相位引致強度雜訊 (Phase-induced intensity noise, PIIN),提高其訊號雜訊比。因此同時使用者的數目也會相對的提高。
總結來說,在我們所提出的系統架構中,雖然嵌入極化分集的技術,但於接收端無需任何解極化裝置即可獲得較佳的系統性能。
Utilizing the property that the light can transmit with two mutually orthogonal states of polarization (SOPs) in single mode fibers, we propose the optical code-division multiple-access (OCDMA) encoder/decoder (codec) structure based on polarization beam splitters (PBSs) and arrayed waveguide gratings (AWGs) and utilize the concept of polarization diversity to implement spectral-polarization coding (SPC) with incoherent optical source. The signature code of users in the system is addressed by the Walsh-Hadamard matrix. And according to different transmitted bits (1 or 0), the specific signature code would accompany with a set of contrary orthogonal SOPs.
At the decoder, the received signal, which includes the SOP information to each wavelength, is took out the corresponding wavelengths matched with encoding scheme then split into two orthogonal SOPs with PBS. Finally, the transmitted signals from users are determined by the double balance-difference detection. Due to the Walsh-Hadamard matrix is an orthogonal matrix, the multiple access interference (MAI) is eliminated in theory. Moreover, the SPC scheme is superior to the spectral-amplitude coding system with Walsh-Hadamard code and results in suppressing effectively phase-induced intensity noise (PIIN) and boosting the signal-to-noise ratio (SNR). Hence, the number of simultaneous active users could be also upgrade.
To sum up, although embedded polarization diversity technique over AWG-based codec in OCDMA network, the performance would be improved without any depolarization device.
[1]. D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photonics Technol. Lett., vol. 4, pp. 479-482, Apr. 1993.
[2]. M. Kavehrad and D. Zaccarin, “Optical code-division-multiplexed systems based on spectra encoding of noncoherent sources,” J. Lightwave Technol., vol. 13, pp. 534-545, Mar. 1995.
[3]. X. Zhou, H. M. H. Shalaby, C. Lu, and T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, pp. 728-729, Apr. 2000.
[4]. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol. 19, pp. 1274-1281, Sep. 2001.
[5]. J. F. Huang and C. C. Yang, “Reductions of multiple-access interference in fiber-grating-based optical CDMA network,” IEEE Trans. Commun., vol. 50, pp. 1680-1687, Oct. 2002.
[6]. B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol., vol. 4, pp. 1704-1710, Nov. 1986.
[7]. E. D. J. Smith, R. J. Baikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, pp. 1176-1185, Sep. 1998.
[8]. R. Dixon, “Why spread spectrum?,” IEEE Commun. Soc. Mag., vol. 13, pp. 21-25, Jul. 1975.
[9]. R. Dixon, “The spread spectrum concept,” IEEE Trans. Commun., vol. 25, pp. 748-755, Aug. 1977.
[10]. E. Marom and O.G. Ramer, “Encoding-decoding optical fiber network,” Electron. Lett., vol. 14, pp. 48, Feb. 1978.
[11]. P. Prucnal, M. Santoro and T. Fan, “Spread spectrum fiber optic local area network using optical processing,” IEEE Network, vol. 4, pp. 547-554, May 1986.
[12]. J. A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles,” IEEE Trans. Commun., vol. 37, pp. 824-833, Aug. 1989.
[13]. J. A. Salehi and C. A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Trans. Commun., vol. 37, pp. 834-842, Aug. 1989.
[14]. K. Sekine, S. Sasaki, and N. Kikuchi, “10 Gbit/s four-channel wavelength- and polarisation-division multiplexing transmission over 340 km with 0.5 nm channel spacing,” Electron. Lett., vol. 31, pp. 49-50, Jan. 1995.
[15]. H. Sotobayashi, W. Chujo, and K. Kitayama, “1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/WDM (4 OCDM × 40 WDM × 40 Gb/s) transmission experiment using optical hard thresholding,” IEEE Photon. Technol. Lett., vol. 14, pp. 555-557, Apr. 2002.
[16]. I. Tsalamanis, E. Rochat, S. Walker, M. Parker, and D. Holburn, “Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing,” Opt. Express, vol. 12, pp. 764-769, Mar. 2004.
[17]. A. R. Chraplyvy, A. H. Gnauck, R. W. Tkach, J. L. Zyskind, J. W. Sulhoff, A. J. Lucero, Y. Sun, R. M. Jopson, F. Forghieri, R. M. Derosier, C. Wolf, and A. R. McConnick, “1 -Tb/s Transmission Experiment,” IEEE Photonics Technol. Lett., vol. 13, pp. 1370-1372, Sep. 2001.
[18]. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electron. Lett., vol. 22, pp. 1029-1030, Sep. 1986.
[19]. R. Khosravni, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, “Polarization-mode dispersion compensation in WDM systems,” IEEE Photonics Technol. Lett., vol. 13, pp. 1370-1372, Dec. 2001.
[20]. A. E. Willner, S. M. R. Motaghian Nezam, L. Yan, Z. Pan, and M. C. Hauer, “Monitoring and control of polarization-related impairments in optical fiber systems,” J. Lightwave Technol., vol. 22, pp. 106-125, Jan. 2004.
[21]. F. Heismann, P. B. Hansen, S. K. Korotky, G. Raybon, J. J. Veselka, and M. S. Whalen, “Automatic polarization demultiplexer for polarization-multiplexed transmission systems,“ Electron. Lett., vol. 29, pp. 1965-1966, Sep. 1986.
[22]. C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol., vol. 6, pp. 1185-1190, Jul. 1988.
[23]. R. A. Chipman, “Polarization issues in fiber systems,” Proc. SPIE, vol. 4481, pp. 81-86, Jan. 2002.
[24]. M. G. Taylor and S. J. Penticost, “Improvement in performance of long haul EDFA link using highfrequency polarisation modulation,” Electron. Lett., vol. 30, pp. 805-806, May 1994.
[25]. L. Nguyen, B. Aazhang, and J. F. Young, “All-optical CDMA with bipolar codes,” Electron. Lett., vol. 31, no. 17, pp.1469-1470, Aug. 1995.
[26]. E. D. J. Smith, R. J. Blaikie, and D. P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, pp. 1176-1185, Sep. 1998.
[27]. H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” J. Lightwave Technol., vol. 17, no. 3, pp. 397-405, Mar. 1999.
[28]. K. Yu, J. Shin, and N. Park, “Wavelength-Time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1278-1280, Sep. 2000.
[29]. E. D. J. Smith, P. T. Gough, and D. P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett., vol. 31, pp. 1469-1470, Aug. 1995.
[30]. J. F. Huang, C. C. Yang, and S. P. Tseng, “Complementary Walsh-Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers,” Optics Commun., vol. 229, pp. 241-248, Jan. 2004.
[31]. Y. T. Chang and J. F. Huang, “Complementary bipolar spectral polarization coding over fiber-grating-based differential photodetectors,” Optical Engineering , vol. 45, pp. 045004, Apr. 2006.
[32]. B. A. Robson, The Theory of Polarization Phenomena. Oxford: Clarendon Press, 1974.
[33]. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and spectroscopy. Boston: Academic Press, 1990.
[34]. E. Collett, Polarized Light Fundamentals and Applications. New York: Dekker, 1993.
[35]. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide N×N wavelength multiplexer,” J. Lightwave Technol., vol. 13, no. 3, pp. 447-455, Mar. 1995.
[36]. H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” J. Lightwave Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
[37]. J. W. Goodman, Statistical Optics. New York: Wiley, 1985.
[38]. T. Demeechai, “Polarization statistics modeling of beat noise in optical on-off-keying networks,” Optics Communications, vol. 226, pp. 205-210, Oct. 2003.
[39]. E. Hecht, Optics-3rd ed. Mass: Addison Wesley, 1998.
[40]. X. Zhou, H. M. H. Shalaby, C. Lu, and T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, pp. 728-729, Apr. 2000.
[41]. E. H. W. Chan and R. A. Minasian, “Suppression of phase-induced intensity noise in optical delay-line signal processors using a differential-detection technique,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 873-879, Feb. 2006.