簡易檢索 / 詳目顯示

研究生: 洪昱琦
Hung, Yu-Chi
論文名稱: 農藥暴露對慢性腎臟病患者腎功能與其代謝體影響
Effects of exposure to pesticides on renal function and metabolomic signatures of patients with chronic kidney disease
指導教授: 陳秀玲
Chen, Hsiu-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 173
中文關鍵詞: 慢性腎臟病農藥暴露代謝體學氧化壓力腎功能
外文關鍵詞: Chronic kidney disease, Pesticides exposure, Metabolomics, Oxidative stress, Renal function
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 農藥的使用對提高作物產量和品質有益,但不當使用可能導致人體過度暴露,引起急性或慢性疾病,膳食攝入是主要的農藥暴露途徑,而蔬果類是主要的農藥殘留食物,有機磷(Organophosphates, OP)和氨基甲酸鹽(Carbamate, CM)農藥在神經系統中作為乙醯膽鹼酯酶抑制劑,導致神經傳導物質累積,並對神經系統、肝臟和腎臟產生毒性,農藥殘留存在農作物或環境中,更可能對敏感族群帶來健康風險。
    本研究聚焦於暴露農藥對腎功能的影響,因腎臟中的血液循環及電解質平衡受到膽鹼性神經元控制,有機磷和氨基甲酸鹽類農藥的暴露可能對腎功能造成損害,尤其在短時間內大量暴露下,可能引發急性腎損傷,而長期暴露則可能影響慢性腎臟病(Chronic Kidney Disease , CKD)的發展。本研究之目標為探討CKD第三至五期患者中,多項農藥的暴露,對代謝路徑及疾病進程的影響。透過世代研究追蹤方式,共收集了89位CKD第三至五期患者的尿液樣本,利用高效液相層析串聯質譜儀(UPLC-MS/MS)分析氧化壓力指標8-hydroxydeoxyguanosine(8-OHdG)的濃度,接著利用高解析四極桿串聯傅立葉轉換電場軌道質譜儀(High-Resolution Quadrupole-Orbitrap Mass Spectrometry, Q-Exactive Orbitrap HRMS)進行尿液中的非標靶代謝體學分析,並透過主成分分析(Principal components analysis, PCA)和正交偏最小二乘判別分析(Orthogonal Projections to Latent Structures Discriminant Analysis, OPLS-DA),篩選出追蹤後改變且與農藥暴露相關的差異代謝物,並分析其相關代謝路徑,以探討患者暴露於農藥暴露對8-OHdG濃度、疾病進程及特定代謝路徑的影響。
    本研究中於受試者之尿液共檢測到71種農藥及農藥代謝物,其中9種為氨基甲酸鹽類農藥,且治滅蝨(Metolcarb)兩次追蹤檢出率均大於95%,此結果顯示氨基甲酸鹽農藥的廣泛應用性,同時,由代謝體分析出8個與農藥暴露相關代謝路徑,包含胺醯tRNA生物合成(Aminoacyl-tRNA biosynthesis)、丙胺酸、天門冬胺酸與麩胺酸代謝(Alanine, aspartate and glutamate metabolism)、色胺酸代謝(Tryptophan metabolism)、檸檬酸循環(Citrate cycle ; TCA cycle)、乙醛酸及二羧酸酯代謝(Glyoxylate and dicarboxylate metabolism)、精胺酸生物合成(Arginine biosynthesis)、β-丙胺酸代謝(beta-Alanine metabolism)、甘胺酸、絲胺酸與蘇胺酸代謝(Glycine, serine and threonine metabolism)及麩胱甘肽代謝(Glutathione metabolism),此結果指出,受試者在飲食或生活中,暴露較高之CM之半定量濃度後,體內受到影響的代謝路徑多與氧化壓力、胺基酸代謝及粒線體能量代謝有關,不同的農藥在代謝體反應上可能具有相似的生物化學特徵。本研究利用L-麩醯胺酸(L-glutamine, L-Gln)、3-氯酪胺酸(3-chlorotyrosine, ClY)以及N2, N2二甲基鳥苷(N2, N2-Dimethylguanosine, M22G)之預測結果可能可做為農藥暴露與腎功能關聯性之生物標記模型,此模型之AUC(Area Under Curve)值為0.903,這些因為暴露農藥而造成改變的代謝物,可能可作為評估農藥暴露對CKD患者造成影響,甚至長期下來可能影響腎功能的生物標記,並有助於反應農藥暴露對於敏感性族群所造成的傷害。
    此外,半胱胺酸(L-Cysteine, L-Cys)、乙醯輔酶A(Acetyl-CoA)、L-麩胺酸(L-Glutamate, L-Glu)及L-組胺酸(L-Histidine, L-His),這些代謝物為造成本研究中與第三期至第五期的CKD受試者eGFR變化且與農藥暴露量相關的代謝物,在eGFR下降組別中,觀察到L-Cys的上調較其他組別明顯;在eGFR上升≥3 mL/min/1.73 m2的組別中發現,L-Glu相較其他組別,有上調的趨勢;在eGFR下降≥5 mL/min/1.73 m2的組別中發現,相較於其他組別,受試者體內Acetyl-CoA下調,這些同時與CKD進程與農藥暴露相關的代謝物,與氧化壓力、神經傳導及組織修復相關。本研究透過代謝體學研究尋找暴露於農藥後改變的代謝物,以及評估這些代謝物與CKD之間的相關性,本研究透過早期鑑定出因農藥暴露所造成之代謝物濃度異常以及預測其可能於潛在疾病過程中之生理途徑,將有助於腎臟疾病的預防與治療。

    Pesticide application is crucial for crop enhancement, but improper use can lead to health risks, especially for sensitive populations. This study aims to investigate the exposure of organophosphates (OP)and carbamate (CM)pesticides among patients with CKD from stage 3-5, examining their effects on metabolic pathways and disease progression. A longitudinal study was conducted and 89 CKD patients was recruited in ths study. 71 pesticides in urine samples were identified, including 9 carbamates. Concentrations of the oxidative stress marker 8-hydroxydeoxyguanosine were measured using UPLC-MS/MS, and non-targeted metabolomic analysis was conducted with High-Resolution Q-Exactive Plus. PCA and OPLS-DA identified the altered metabolites associated with pesticide exposure. The current result revealed that 8 metabolic pathways influenced by carbamates exposure. The higher carbamate concentrations in diet or lifestyle may significantly influenced oxidative stress, amino acid metabolism, and mitochondrial energy metabolism. Pesticides displayed similar metabolic fingerprints, with altered metabolites serving as potential biomarkers for oxidative stress impact on CKD patients. The study identified L-glutamine (L-Gln), 3-chlorotyrosine (ClY) and N2, N2-Dimethylguanosine (M22G) as potential indicators of pesticide exposure. Through a biomarker model, the study further analyzed the exploratory value and significance of its clinical application. CKD and pesticide exposure induced abnormalities in amino acid and energy metabolism, with key metabolites such as L-Cysteine (L-Cys), Acetyl-CoA, L-Glutamate (L-Glu), and L-Histidine (L-His). Detecting exposure-altered metabolites through metabolomics aids in early identification, contributing to understanding and preventing deterioration of kidney diseases.

    摘要 I EXTENDED ABSTRACT III 誌謝 VII 目錄 X 表目錄 XIII 圖目錄 XV 縮寫表 XVII 一、 前言 1 1-1. 研究背景 1 1-2. 研究目的 4 二、 文獻回顧 6 2-1. CKD 定義、分期與檢測 6 2-2. 台灣 CKD 概況 9 2-3. 台灣 CKD 盛行率與血液透析狀況 9 2-4. CKD 之病因、危險與惡化因子 10 2-5. 台灣農藥使用量及施用狀況 11 2-6. 農藥之應用、生物偵測及對人體之影響 16 2-6.1 對乙醯膽鹼酯酶進行抑制反應類型之農藥在世界與台灣使用情況 16 2-6.2 農藥暴露對人體之危害 18 2-6.3 農藥對腎臟的影響 21 2-7. 代謝體學的應用領域及發展 24 2-7.1 代謝體學介紹 24 2-7.2 代謝體於各領域之發展與應用現況 26 2-7.3 農藥與代謝體之關聯性 26 2-8. 代謝體學分析方法與流程 30 2-8.1 標靶與非標靶代謝體學 30 2-8.2 分析方法與流程 32 2-8.3 代謝體學數據的統計分析方法 39 2-9. 代謝體學於 CKD 診斷中之應用與挑戰 43 2-10. 代謝體學目前發展限制 45 三、 材料與方法 48 3-1 研究架構 48 3-2 研究人群與檢體收集流程 49 3-2.1 招募研究對象 49 3-2.2 檢體採集流程 49 3-2.3 問卷調查 50 3-2.4 受試者第二次追蹤 51 3-3 尿液之多重農藥分析 51 3-3.1 品保與品管(QA/QC) 51 3-3.2 樣品前處理與儀器參數 51 3-3.3 農藥資料庫比對與鑑定 53 3-4 尿液 8-OHDG 分析 54 3-4.1 品保與品管(QA/QC) 54 3-4.2 樣品前處理 54 3-4.3 樣品分析 55 3-5 尿液代謝體學分析 57 3-5.1 品保與品管(QA/QC) 57 3-5.2 樣品前處理與儀器參數 57 3-5.3 代謝體數據處理與化合物鑑定 59 3-6 統計分析 60 四、 結果與討論 61 4-1 受試者基本資料、居住環境及生活習慣 61 4-2 受試者兩次追蹤生化數值、飲食狀態對體內氧化壓力指標(8-OHDG)變 化的影響 64 4-3 代謝體追蹤結果(飲食習慣與代謝體、六個月代謝路徑及代謝物濃度變 化造成腎功能變化之關聯性探討) 71 4-4 農藥檢測結果及可能暴露來源之探討 82 4-5 農藥暴露對體內代謝路徑影響 93 4-6 CM 暴露之候選生物標記與腎功能關係之探討 108 4-7 農藥暴露對 CKD 進程的影響 115 五、 結論 122 六、 研究優勢與限制 125 七、 參考文獻 127 八、 附件 146

    Abbiss, H., Maker, G. L., & Trengove, R. D. (2019). Metabolomics Approaches for the Diagnosis and Understanding of Kidney Diseases. Metabolites, 9(2). https://doi.org/10.3390/metabo9020034
    Adiguzel, C., & Kalender, Y. (2020). Bendiocarb-induced nephrotoxicity in rats and the protective role of vitamins C and E. Environmental Science and Pollution Research, 27(6), 6449-6458. https://doi.org/10.1007/s11356-019-07260-x
    Administrator. (2004). https://ir.nctu.edu.tw/bitstream/11536/51746/6/953206.pdf
    Aguilar-Lozano, A., Baier, S., Grove, R., Shu, J., Giraud, D., Leiferman, A., Mercer, K. E., Cui, J., Badger, T. M., Adamec, J., Andres, A., & Zempleni, J. (2018). Concentrations of Purine Metabolites Are Elevated in Fluids from Adults and Infants and in Livers from Mice Fed Diets Depleted of Bovine Milk Exosomes and their RNA Cargos. J Nutr, 148(12), 1886-1894. https://doi.org/10.1093/jn/nxy223
    Akram, M. (2014). Citric Acid Cycle and Role of its Intermediates in Metabolism. Cell Biochemistry and Biophysics, 68(3), 475-478. https://doi.org/10.1007/s12013-013-9750-1
    Alonso, A., Marsal, S., & Julià, A. (2015). Analytical Methods in Untargeted Metabolomics: State of the Art in 2015 [Review]. Frontiers in Bioengineering and Biotechnology, 3. https://doi.org/10.3389/fbioe.2015.00023
    Anders, H. J. (2005). Chronic kidney disease. Medizinische Klinik, 100(11), 714-721. https://doi.org/10.1007/s00063-005-1089-y
    Angeloco, L. R. N., Arces de Souza, G. C., Romão, E. A., Frassetto, L., & Chiarello, P. G. (2020). Association of dietary acid load with serum bicarbonate in chronic kidney disease (CKD) patients. European Journal of Clinical Nutrition, 74(1), 69-75. https://doi.org/10.1038/s41430-020-0689-1
    Aretz, I., & Meierhofer, D. (2016). Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology. International Journal of Molecular Sciences, 17(5). https://doi.org/10.3390/ijms17050632
    Atamaniuk, T. M., Kubrak, O. I., Husak, V. V., Storey, K. B., & Lushchak, V. I. (2014). The Mancozeb-Containing Carbamate Fungicide Tattoo Induces Mild Oxidative Stress in Goldfish Brain, Liver, and Kidney. ENVIRONMENTAL TOXICOLOGY, 29(11), 1227-1235. https://doi.org/10.1002/tox.21853
    Bachhawat, A. K., & Yadav, S. (2018). The glutathione cycle: Glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life, 70(7), 585-592. https://doi.org/10.1002/iub.1756
    Bae, J.-W., & Kwon, W.-S. (2021). Piperonyl butoxide, a synergist of pesticides can elicit male-mediated reproductive toxicity. Reproductive Toxicology, 100, 120-125. https://doi.org/https://doi.org/10.1016/j.reprotox.2021.01.010
    Baillie, T. A. (2008). Metabolism and Toxicity of Drugs. Two Decades of Progress in Industrial Drug Metabolism. Chemical Research in Toxicology, 21(1), 129-137. https://doi.org/10.1021/tx7002273
    Biberoglu, K., Schopfer, L. M., Tacal, O., & Lockridge, O. (2020). Characteristic fragment ions associated with dansyl cadaverine and biotin cadaverine adducts on glutamine. ANALYTICAL BIOCHEMISTRY, 600, Article 113718. https://doi.org/10.1016/j.ab.2020.113718
    Blaženović, I., Kind, T., Ji, J., & Fiehn, O. (2018). Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites, 8(2). https://doi.org/10.3390/metabo8020031
    Brunk, E., Sahoo, S., Zielinski, D. C., Altunkaya, A., Dräger, A., Mih, N., Gatto, F., Nilsson, A., Preciat Gonzalez, G. A., Aurich, M. K., Prlić, A., Sastry, A., Danielsdottir, A. D., Heinken, A., Noronha, A., Rose, P. W., Burley, S. K., Fleming, R. M. T., Nielsen, J., . . . Palsson, B. O. (2018). Recon3D enables a three-dimensional view of gene variation in human metabolism. Nature Biotechnology, 36(3), 272-281. https://doi.org/10.1038/nbt.4072
    Bünger, R., & Mallet, R. T. (2016). Metabolomics and Receiver Operating Characteristic Analysis: A Promising Approach for Sepsis Diagnosis. Critical care medicine, 44(9), 1784-1785. https://doi.org/10.1097/CCM.0000000000001795
    Cequier, E., Sakhi, A. K., Haug, L. S., & Thomsen, C. (2017). Exposure to organophosphorus pesticides in Norwegian mothers and their children: Diurnal variability in concentrations of their biomarkers and associations with food consumption. Science of The Total Environment, 590-591, 655-662. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.03.017
    Ch, R., Singh, A. K., Pathak, M. K., Singh, A., Kesavachandran, C. N., Bihari, V., & Mudiam, M. K. R. (2019). Saliva and urine metabolic profiling reveals altered amino acid and energy metabolism in male farmers exposed to pesticides in Madhya Pradesh State, India. Chemosphere, 226, 636-644. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.03.157
    Chan, D. (2021). https://sites.brown.edu/publichealthjournal/2021/12/13/kidneys/
    Chang, H.-L., Wu, C.-C., Lee, S.-P., Chen, Y.-K., Su, W., & Su, S.-L. (2019). A predictive model for progression of CKD. Medicine, 98(26). https://journals.lww.com/md-journal/Fulltext/2019/06280/A_predictive_model_for_progression_of_CKD.66.aspx
    Chen, S., Zhang, M. Y., Bo, L., Li, S. Q., Hu, L. Y., Zhao, X. J., & Sun, C. H. (2018). Metabolomic analysis of the toxic effect of chronic exposure of cadmium on rat urine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 25(4), 3765-3774. https://doi.org/10.1007/s11356-017-0774-8
    Chen, T. K., Knicely, D. H., & Grams, M. E. (2019). Chronic Kidney Disease Diagnosis and Management: A Review. JAMA, 322(13), 1294-1304. https://doi.org/10.1001/jama.2019.14745
    Cobilinschi, C., Tincu, R. C., Cobilinschi, C. O., Neagu, T. P., Becheanu, G., Sinescu, R. D., Checherita, I. A., Grintescu, I. M., & Lascar, I. (2020). Histopathological features of low-dose organophosphate exposure. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY, 61(2), 423-432. https://doi.org/10.47162/RJME.61.2.11
    Collins, A. J., Foley, R. N., Chavers, B., Gilbertson, D., Herzog, C., Johansen, K., Kasiske, B., Kutner, N., Liu, J., St Peter, W., Guo, H., Gustafson, S., Heubner, B., Lamb, K., Li, S., Li, S., Peng, Y., Qiu, Y., Roberts, T., . . . Agodoa, L. (2012). 'United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am J Kidney Dis, 59(1 Suppl 1), A7, e1-420. https://doi.org/10.1053/j.ajkd.2011.11.015
    Coresh, J., Inker, L. A., Sang, Y., Chen, J., Shafi, T., Post, W. S., Shlipak, M. G., Ford, L., Goodman, K., Perichon, R., Greene, T., & Levey, A. S. (2019). Metabolomic profiling to improve glomerular filtration rate estimation: a proof-of-concept study. Nephrology Dialysis Transplantation, 34(5), 825-833. https://doi.org/10.1093/ndt/gfy094
    Dahabiyeh, L. A., Nimer, R. M., Sumaily, K. M., Alabdaljabar, M. S., Jacob, M., Sabi, E. M., Hussein, M. H., & Abdel Rahman, A. (2023). Metabolomics profiling distinctively identified end-stage renal disease patients from chronic kidney disease patients. Scientific Reports, 13(1), 6161. https://doi.org/10.1038/s41598-023-33377-8
    Debnath, S., Velagapudi, C., Redus, L., Thameem, F., Kasinath, B., Hura, C. E., Lorenzo, C., Abboud, H. E., & O'Connor, J. C. (2017). Tryptophan Metabolism in Patients With Chronic Kidney Disease Secondary to Type 2 Diabetes: Relationship to Inflammatory Markers. Int J Tryptophan Res, 10, 1178646917694600. https://doi.org/10.1177/1178646917694600
    Dereumeaux, C., Fillol, C., Quenel, P., & Denys, S. (2020). Pesticide exposures for residents living close to agricultural lands: A review. Environment International, 134, 105210. https://doi.org/https://doi.org/10.1016/j.envint.2019.105210
    Di Salvo, E., Casciaro, M., Giorgianni, C. M., Cicero, N., & Gangemi, S. (2023). Age-Related Diseases and Foods Generating Chlorinative Stress. Antioxidants, 12(2).
    Dryer, S. E. (2015). Glutamate receptors in the kidney. Nephrology Dialysis Transplantation, 30(10), 1630-1638. https://doi.org/10.1093/ndt/gfv028
    Du, L. F., Li, S. F., Qi, L., Hou, Y. R., Zeng, Y., Xu, W., Wang, H., Zhao, X. J., & Sun, C. H. (2014). Metabonomic analysis of the joint toxic action of long-term low-level exposure to a mixture of four organophosphate pesticides in rat plasma. MOLECULAR BIOSYSTEMS, 10(5), 1153-1161. https://doi.org/10.1039/c4mb00044g
    Ejerblad, E., Fored, C. M., Lindblad, P., Fryzek, J., Dickman, P. W., Elinder, C. G., McLaughlin, J. K., & Nyrén, O. (2004). Association between smoking and chronic renal failure in a nationwide population-based case-control study. J Am Soc Nephrol, 15(8), 2178-2185. https://doi.org/10.1097/01.Asn.0000135048.35659.10
    Eriksen, B. O., & Ingebretsen, O. C. (2006). The progression of chronic kidney disease: A 10-year population-based study of the effects of gender and age. Kidney International, 69(2), 375-382. https://doi.org/https://doi.org/10.1038/sj.ki.5000058
    EU-Lex. (2020). https://eur-lex.europa.eu/homepage.html
    Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P., Wu, G., Stein, L., D’Eustachio, P., & Hermjakob, H. (2018). Reactome graph database: Efficient access to complex pathway data. PLOS Computational Biology, 14(1), e1005968. https://doi.org/10.1371/journal.pcbi.1005968
    FAOStat. (2016). 台灣農藥使用狀況與長期癌症發生率之探討台灣農藥使用狀況與長期癌症發生率之探討. https://www.superlab.com.tw/half_life_1/
    Fiehn, O. (2016). Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Current protocols in molecular biology, 114, 30.34.31-30.34.32. https://doi.org/10.1002/0471142727.mb3004s114
    Gagnebin, Y., Julien, B., Belén, P., & Serge, R. (2018). Metabolomics in chronic kidney disease: Strategies for extended metabolome coverage. Journal of Pharmaceutical and Biomedical Analysis, 161, 313-325. https://doi.org/https://doi.org/10.1016/j.jpba.2018.08.046
    Gentile, G., & Remuzzi, G. (2016). Novel Biomarkers for Renal Diseases? None for the Moment (but One). SLAS Discovery, 21(7), 655-670. https://doi.org/https://doi.org/10.1177/1087057116629916
    George L Bakris, M. P. F., MD, MSc. (2022). Secondary factors and progression of chronic kidney disease. https://www.uptodate.com/contents/secondary-factors-and-progression-of-chronic-kidney-disease
    Gerlich, M., & Neumann, S. (2013). MetFusion: integration of compound identification strategies. JOURNAL OF MASS SPECTROMETRY, 48(3), 291-298. https://doi.org/10.1002/jms.3123
    Ghosh, T., Philtron, D., Zhang, W. M., Kechris, K., & Ghosh, D. (2021). Reproducibility of mass spectrometry based metabolomics data. BMC BIOINFORMATICS, 22(1). https://doi.org/10.1186/s12859-021-04336-9
    Gibson, K. M., Schor, D. S. M., Gupta, M., Guerand, W. S., Senephansiri, H., Burlingame, T. G., Bartels, H., Hogema, B. M., Bottiglieri, T., Froestl, W., Snead, O. C., Grompe, M., & Jakobs, C. (2002). Focal neurometabolic alterations in mice deficient for succinate semialdehyde dehydrogenase. JOURNAL OF NEUROCHEMISTRY, 81(1), 71-79. https://doi.org/10.1046/j.1471-4159.2002.00784.x
    Gonzalez-Covarrubias, V., Martínez-Martínez, E., & Del Bosque-Plata, L. (2022). The Potential of Metabolomics in Biomedical Applications. Metabolites, 12(2). https://doi.org/10.3390/metabo12020194
    Gonzalez-Covarrubias, V., Martínez-Martínez, E., & del Bosque-Plata, L. (2022). The Potential of Metabolomics in Biomedical Applications. Metabolites, 12(2).
    Gosik, R., & Danel, K. (2021). The Rising Risk of Chronic Kidney Disease (CKD) and How it is Dealt with: A Review of Current and Potential Phosphate Binders (PB). MINI-REVIEWS IN MEDICINAL CHEMISTRY, 21(19), 3052-3061. https://doi.org/10.2174/1389557521666210616161728
    Guo, C., Li, X., Wang, R., Yu, J., Ye, M., Mao, L., Zhang, S., & Zheng, S. (2016). Association between Oxidative DNA Damage and Risk of Colorectal Cancer: Sensitive Determination of Urinary 8-Hydroxy-2′-deoxyguanosine by UPLC-MS/MS Analysis. Scientific Reports, 6(1), 32581. https://doi.org/10.1038/srep32581
    Hall, S. M., Raines, N. H., Ramirez-Rubio, O., Amador, J. J., López-Pilarte, D., O'Callaghan-Gordo, C., Gil-Redondo, R., Embade, N., Millet, O., Peng, X. J., Vences, S., Keogh, S. A., Delgado, I. S., Friedman, D. J., Brooks, D. R., & Leibler, J. H. (2023). Urinary Metabolomic Profile of Youth at Risk of Chronic Kidney Disease in Nicaragua. KIDNEY360, 4(7), 899-908. https://doi.org/10.34067/KID.0000000000000129
    Hampton, M. B., Kettle, A. J., & Winterbourn, C. C. (1996). Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils. Infect Immun, 64(9), 3512-3517. https://doi.org/10.1128/iai.64.9.3512-3517.1996
    Hao, Y., Reyes, L. T., Morris, R., Xu, Y., Wang, Y., & Cheng, F. (2020). Changes of protein levels in human urine reflect the dysregulation of signaling pathways of chronic kidney disease and its complications. Scientific Reports, 10(1), 20743. https://doi.org/10.1038/s41598-020-77916-z
    Hasegawa, S., Jao, T.-M., & Inagi, R. (2017). Dietary Metabolites and Chronic Kidney Disease. Nutrients, 9(4). https://doi.org/10.3390/nu9040358
    Hawthorne, G., Lightfoot, C. J., Smith, A. C., Khunti, K., & Wilkinson, T. J. (2023). Multimorbidity prevalence and patterns in chronic kidney disease: findings from an observational multicentre UK cohort study. International Urology and Nephrology, 55(8), 2047-2057. https://doi.org/10.1007/s11255-023-03516-1
    Herber-Gast, G.-C. M., Biesbroek, S., Verschuren, W. M. M., Stehouwer, C. D. A., Gansevoort, R. T., Bakker, S. J. L., & Spijkerman, A. M. W. (2016). Association of dietary protein and dairy intakes and change in renal function: results from the population-based longitudinal Doetinchem cohort study12. The American Journal of Clinical Nutrition, 104(6), 1712-1719. https://doi.org/https://doi.org/10.3945/ajcn.116.137679
    Hocher, B., & Adamski, J. (2017). Metabolomics for clinical use and research in chronic kidney disease. Nature Reviews Nephrology, 13(5), 269-284. https://doi.org/10.1038/nrneph.2017.30
    Holeček, M. (2020). Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients, 12(3).
    Hu, D. Y., Wu, M. Y., Chen, G. Q., Deng, B. Q., Yu, H. B., Huang, J., Luo, Y., Li, M. Y., Zhao, D. K., & Liu, J. Y. (2022). Metabolomics analysis of human plasma reveals decreased production of trimethylamine N-oxide retards the progression of chronic kidney disease. Br J Pharmacol, 179(17), 4344-4359. https://doi.org/10.1111/bph.15856
    Hwang, S. J., Tsai, J. C., & Chen, H. C. (2010). Epidemiology, impact and preventive care of chronic kidney disease in Taiwan. Nephrology (Carlton), 15 Suppl 2, 3-9. https://doi.org/10.1111/j.1440-1797.2010.01304.x
    Jacobson, M. H., Wu, Y., Liu, M., Kannan, K., Li, A. J., Robinson, M., Warady, B. A., Furth, S., Trachtman, H., & Trasande, L. (2021). Organophosphate pesticides and progression of chronic kidney disease among children: A prospective cohort study. Environment International, 155, 106597. https://doi.org/https://doi.org/10.1016/j.envint.2021.106597
    Jacobson, M. H., Wu, Y. X., Liu, M. L., Kannan, K., Li, A. J., Robinson, M., Warady, B. A., Furth, S., Trachtman, H., & Trasande, L. (2021). Organophosphate pesticides and progression of chronic kidney disease among children: A prospective cohort study. ENVIRONMENT INTERNATIONAL, 155. https://doi.org/10.1016/j.envint.2021.106597
    Jang, M., Kim, S. S., & Lee, J. (2013). Cancer cell metabolism: implications for therapeutic targets. Exp Mol Med, 45(10), e45. https://doi.org/10.1038/emm.2013.85
    Jayasumana, C., Gunatilake, S., & Siribaddana, S. (2015). Simultaneous exposure to multiple heavy metals and glyphosate may contribute to Sri Lankan agricultural nephropathy. BMC nephrology, 16, 103-103. https://doi.org/10.1186/s12882-015-0109-2
    Jellali, R., Jacques, S., Essaouiba, A., Gilard, F., Letourneur, F., Gakière, B., Legallais, C., & Leclerc, E. (2021). Investigation of steatosis profiles induced by pesticides using liver organ-on-chip model and omics analysis. FOOD AND CHEMICAL TOXICOLOGY, 152, Article 112155. https://doi.org/10.1016/j.fct.2021.112155
    Jiménez-Uribe, A. P., Hernández-Cruz, E. Y., Ramírez-Magaña, K. J., & Pedraza-Chaverri, J. (2021). Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules, 11(9). https://doi.org/10.3390/biom11091259
    Jiménez-Uribe, A. P., Hernández-Cruz, E. Y., Ramírez-Magaña, K. J., & Pedraza-Chaverri, J. (2021). Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules, 11(9).
    Jin, M., Yang, F., Yang, I., Yin, Y., Luo, J. J., Wang, H., & Yang, X. F. (2012). Uric acid, hyperuricemia and vascular diseases. Front Biosci (Landmark Ed), 17(2), 656-669. https://doi.org/10.2741/3950
    Joshi-Tope, G., Gillespie, M., Vastrik, I., D'Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G. R., Wu, G. R., Matthews, L., Lewis, S., Birney, E., & Stein, L. (2005). Reactome: a knowledgebase of biological pathways. Nucleic Acids Res, 33(Database issue), D428-432. https://doi.org/10.1093/nar/gki072
    Kalender, S., Ogutcu, A., Uzunhisarcikli, M., Açikgoz, F., Durak, D., Ulusoy, Y., & Kalender, Y. (2005). Diazinon-induced hepatotoxicity and protective effect of vitamin E on some biochemical indices and ultrastructural changes. Toxicology, 211(3), 197-206. https://doi.org/https://doi.org/10.1016/j.tox.2005.03.007
    Kamanyire, R., & Karalliedde, L. (2004). Organophosphate toxicity and occupational exposure. OCCUPATIONAL MEDICINE-OXFORD, 54(2), 69-75. https://doi.org/10.1093/occmed/kqh018
    Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic acids research, 32(Database issue), D277-D280. https://doi.org/10.1093/nar/gkh063
    Kataria, A., Trasande, L., & Trachtman, H. (2015). The effects of environmental chemicals on renal function. Nature Reviews Nephrology, 11(10), 610-625. https://doi.org/10.1038/nrneph.2015.94
    Kaya, Y., Bas, O., Hanci, H., Cankaya, S., Nalbant, I., Odaci, E., Avni Uydu, H., & Aslan, A. (2018). Acute renal involvement in organophosphate poisoning: histological and immunochemical investigations. Renal failure, 40(1), 410-415. https://doi.org/10.1080/0886022X.2018.1489289
    Kieffer, D. A., Piccolo, B. D., Vaziri, N. D., Liu, S., Lau, W. L., Khazaeli, M., Nazertehrani, S., Moore, M. E., Marco, M. L., Martin, R. J., & Adams, S. H. (2016). Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol, 310(9), F857-871. https://doi.org/10.1152/ajprenal.00513.2015
    Kimura, T., Yasuda, K., Yamamoto, R., Soga, T., Rakugi, H., Hayashi, T., & Isaka, Y. (2016). Identification of biomarkers for development of end-stage kidney disease in chronic kidney disease by metabolomic profiling. Scientific Reports, 6(1), 26138. https://doi.org/10.1038/srep26138
    Kind, T., & Fiehn, O. (2007). Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8(1), 105. https://doi.org/10.1186/1471-2105-8-105
    Knolhoff, A. M., Callahan, J. H., & Croley, T. R. (2014). Mass Accuracy and Isotopic Abundance Measurements for HR-MS Instrumentation: Capabilities for Non-Targeted Analyses. Journal of The American Society for Mass Spectrometry, 25(7), 1285-1294. https://doi.org/10.1007/s13361-014-0880-5
    Kobayashi, T. (2016). Metabolomics and Stages of Chronic Kidney Disease. In V. B. Patel & V. R. Preedy (Eds.), Biomarkers in Kidney Disease (pp. 69-82). Springer Netherlands. https://doi.org/10.1007/978-94-007-7699-9_41
    Kobayashi, T. (2016). Metabolomics and Stages of Chronic Kidney Disease. In V. B. Patel & V. R. Preedy (Eds.), BIOMARKERS IN KIDNEY DISEASE, VOLS 1 AND 2 (pp. 69-82). https://doi.org/10.1007/978-94-007-7699-9_41
    10.1007/978-94-007-7699-9
    Kruskal, W. H., & Wallis, W. A. (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association, 47(260), 583-621. https://doi.org/10.1080/01621459.1952.10483441
    Kumar, R. (2017). https://www.readcube.com/articles/10.3389/fpls.2017.01302
    Kuo, H.-W., Tsai, S.-S., Tiao, M.-M., & Yang, C.-Y. (2007). Epidemiological Features of CKD in Taiwan. American Journal of Kidney Diseases, 49(1), 46-55. https://doi.org/https://doi.org/10.1053/j.ajkd.2006.10.007
    Kuo, H. W., Tsai, S. S., Tiao, M. M., & Yang, C. Y. (2007). Epidemiological features of CKD in Taiwan. Am J Kidney Dis, 49(1), 46-55. https://doi.org/10.1053/j.ajkd.2006.10.007
    Kurella, M., Lo, J. C., & Chertow, G. M. (2005). Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol, 16(7), 2134-2140. https://doi.org/10.1681/asn.2005010106
    Lebov, J. F., Engel, L. S., Richardson, D., Hogan, S. L., Hoppin, J. A., & Sandler, D. P. (2016). Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study. Occup Environ Med, 73(1), 3-12. https://doi.org/10.1136/oemed-2014-102615
    Lebov, J. F., Engel, L. S., Richardson, D., Hogan, S. L., Sandler, D. P., & Hoppin, J. A. (2015). Pesticide exposure and end-stage renal disease risk among wives of pesticide applicators in the Agricultural Health Study. Environmental Research, 143, 198-210. https://doi.org/https://doi.org/10.1016/j.envres.2015.10.002
    Lee, F.-Y., Chen, W.-K., Lin, C.-L., Lai, C.-Y., Wu, Y.-S., Lin, I. C., & Kao, C.-H. (2015). Organophosphate Poisoning and Subsequent Acute Kidney Injury Risk: A Nationwide Population-Based Cohort Study. Medicine, 94(47). https://journals.lww.com/md-journal/Fulltext/2015/11240/Organophosphate_Poisoning_and_Subsequent_Acute.52.aspx
    Lee, S. H., An, J. H., Park, H.-M., & Jung, B. H. (2012). Investigation of endogenous metabolic changes in the urine of pseudo germ-free rats using a metabolomic approach. Journal of Chromatography B, 887-888, 8-18. https://doi.org/https://doi.org/10.1016/j.jchromb.2011.12.030
    Levey, A. S., Eckardt, K.-U., Tsukamoto, Y., Levin, A., Coresh, J., Rossert, J., Zeeuw, D. D. E., Hostetter, T. H., Lameire, N., & Eknoyan, G. (2005). Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney International, 67(6), 2089-2100. https://doi.org/https://doi.org/10.1111/j.1523-1755.2005.00365.x
    Li, R., Jia, Z., & Trush, M. A. (2016). Defining ROS in Biology and Medicine. Reactive oxygen species (Apex, N.C.), 1(1), 9-21. https://doi.org/10.20455/ros.2016.803
    Lin, T. J., Walter, F. G., Hung, D. Z., Tsai, J. L., Hu, S. C., Chang, J. S., Deng, J.-F., Chase, P. B., Denninghoff, K., & Chan, H. M. (2008). Epidemiology of organophosphate pesticide poisoning in Taiwan. Clinical Toxicology, 46(9), 794-801. https://doi.org/10.1080/15563650801986695
    Liu, C., Liu, Z., Fang, Y., Du, Z., Yan, Z., Yuan, X., Dai, L., Yu, T., Xiong, M., Tian, Y., Li, H., Li, F., Zhang, J., Meng, L., Wang, Z., Jiang, H., & Zhang, Z. (2022). Exposure to the environmentally toxic pesticide maneb induces Parkinson's disease-like neurotoxicity in mice: A combined proteomic and metabolomic analysis. Chemosphere, 308, 136344. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.136344
    Lopez-Giacoman, S., & Madero, M. (2015). Biomarkers in chronic kidney disease, from kidney function to kidney damage. World journal of nephrology, 4(1), 57-73. https://doi.org/10.5527/wjn.v4.i1.57
    Lu, M.-C., Chen, I. J., Hsu, L.-T., Chen, Y.-J., Tsou, M.-T., Tung, T.-H., & Chen, J.-Y. (2021). Metabolic Risk Factors Associated With Chronic Kidney Disease in a Middle-Aged and Elderly Taiwanese Population: A Cross-Sectional Study [Original Research]. Frontiers in Medicine, 8. https://www.frontiersin.org/article/10.3389/fmed.2021.748037
    Lu, Q., Lin, N., Cheng, X., Yuan, T., Zhang, Y., Gao, Y., Xia, Y., Ma, Y., & Tian, Y. (2022). Simultaneous determination of 16 urinary metabolites of organophosphate flame retardants and organophosphate pesticides by solid phase extraction and ultra performance liquid chromatography coupled to tandem mass spectrometry. Chemosphere, 300, 134585. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.134585
    Lukaszewicz-Hussain, A., & Moniuszko-Jakoniuk, J. (2005). A low dose of chlorfenvinphos affects hepatic enzymes in serum and antioxidant enzymes in erythrocytes and liver of rats. POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 14(2), 199-202.
    Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. The Annals of Mathematical Statistics, 18(1), 50-60. https://doi.org/10.1214/aoms/1177730491
    Markley, J. L., Dashti, H., Wedell, J. R., Westler, W. M., & Eghbalnia, H. R. (2019). Tools for Enhanced NMR-Based Metabolomics Analysis. Methods in molecular biology (Clifton, N.J.), 2037, 413-427. https://doi.org/10.1007/978-1-4939-9690-2_23
    Martins, A. M., Bello Moreira, A. S., Canella, D. S., Rodrigues, J., Santin, F., Wanderley, B., Lourenço, R. A., & Avesani, C. M. (2017). Elderly patients on hemodialysis have worse dietary quality and higher consumption of ultraprocessed food than elderly without chronic kidney disease. Nutrition, 41, 73-79. https://doi.org/https://doi.org/10.1016/j.nut.2017.03.013
    Mazzaferro, S., de Martini, N., Cannata-Andía, J., Cozzolino, M., Messa, P., Rotondi, S., Tartaglione, L., Pasquali, M., & on behalf of the, E. R. A. E. C. K. D. M. B. D. W. G. (2021). Focus on the Possible Role of Dietary Sodium, Potassium, Phosphate, Magnesium, and Calcium on CKD Progression. Journal of Clinical Medicine, 10(5).
    Mehl, F., Marti, G., Merle, P., Delort, E., Baroux, L., Sommer, H., Wolfender, J. L., Rudaz, S., & Boccard, J. (2015). Integrating metabolomic data from multiple analytical platforms for a comprehensive characterisation of lemon essential oils. FLAVOUR AND FRAGRANCE JOURNAL, 30(2), 131-138. https://doi.org/10.1002/ffj.3230
    Meijer, J., Lamoree, M., Hamers, T., Antignac, J.-P., Hutinet, S., Debrauwer, L., Covaci, A., Huber, C., Krauss, M., Walker, D. I., Schymanski, E. L., Vermeulen, R., & Vlaanderen, J. (2021). An annotation database for chemicals of emerging concern in exposome research. Environment International, 152, 106511. https://doi.org/https://doi.org/10.1016/j.envint.2021.106511
    Mesnage, R., Arno, M., Costanzo, M., Malatesta, M., Séralini, G. E., & Antoniou, M. N. (2015). Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure. Environ Health, 14, 70. https://doi.org/10.1186/s12940-015-0056-1
    Mishra, S., Pang, S., Zhang, W., Lin, Z., Bhatt, P., & Chen, S. (2021). Insights into the microbial degradation and biochemical mechanisms of carbamates. Chemosphere, 279, 130500. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.130500
    Montenegro-Burke, J. R., Guijas, C., & Siuzdak, G. (2020). METLIN: A Tandem Mass Spectral Library of Standards. In S. Li (Ed.), COMPUTATIONAL METHODS AND DATA ANALYSIS FOR METABOLOMICS (Vol. 2104, pp. 149-163). https://doi.org/10.1007/978-1-0716-0239-3_9
    10.1007/978-1-0716-0239-3
    Moro, J., Tomé, D., Schmidely, P., Demersay, T. C., & Azzout-Marniche, D. (2020). Histidine: A Systematic Review on Metabolism and Physiological Effects in Human and Different Animal Species. Nutrients, 12(5). https://doi.org/10.3390/nu12051414
    Mu, Q. e., Zhang, M., Li, Y., Feng, F., Yu, X., & Nie, J. (2022). Metabolomic Analysis Reveals the Effect of Insecticide Chlorpyrifos on Rice Plant Metabolism. Metabolites, 12(12).
    Nakao, T., Sanaka, T., Tsubakihara, Y., Hattori, M., Honda, M., Mizuiri, S., Watanabe, Y., Kanazawa, Y., & Kanno, T. (2007). [Dietary recommendations for chronic kidney disease, 2007]. Nihon Jinzo Gakkai shi, 49(8), 871-878. http://europepmc.org/abstract/MED/18186226
    Nasuti, C., Cantalamessa, F., Falcioni, G., & Gabbianelli, R. (2003). Different effects of Type I and Type II pyrethroids on erythrocyte plasma membrane properties and enzymatic activity in rats. Toxicology, 191(2), 233-244. https://doi.org/https://doi.org/10.1016/S0300-483X(03)00207-5
    Nolasco, D. M., Mendes, M. P. R., Marciano, L. P., Costa, L. F., Macedo, A. N., Sakakibara, I. M., Silvério, A. C., Paiva, M. J. N., & André, L. C. (2023). An Exploratory Study of the Metabolite Profiling from Pesticides Exposed Workers. Metabolites, 13(5).
    Rasmussen, L. G., Savorani, F., Larsen, T. M., Dragsted, L. O., Astrup, A., & Engelsen, S. B. (2011). Standardization of factors that influence human urine metabolomics. Metabolomics, 7(1), 71-83. https://doi.org/10.1007/s11306-010-0234-7
    Ravula, A. R., & Yenugu, S. (2021). Pyrethroid based pesticides – chemical and biological aspects. Critical Reviews in Toxicology, 51(2), 117-140. https://doi.org/10.1080/10408444.2021.1879007
    Reactome. (2016). https://weitinglin.com/2016/10/20/%E7%94%A8reactome%E5%81%9Apathway-analysis/
    Renna, M., Castellino, M., Leoni, B., Paradiso, V. M., & Santamaria, P. (2018). Microgreens Production with Low Potassium Content for Patients with Impaired Kidney Function. Nutrients, 10(6).
    Roberts, L. D., Souza, A. L., Gerszten, R. E., & Clish, C. B. (2012a). Targeted metabolomics. Current protocols in molecular biology, Chapter 30, Unit30.32-30.32.24. https://doi.org/10.1002/0471142727.mb3002s98
    Roberts, L. D., Souza, A. L., Gerszten, R. E., & Clish, C. B. (2012b). Targeted Metabolomics [https://doi.org/10.1002/0471142727.mb3002s98]. Current Protocols in Molecular Biology, 98(1), 30.32.31-30.32.24. https://doi.org/https://doi.org/10.1002/0471142727.mb3002s98
    Robertson, D. G., Watkins, P. B., & Reily, M. D. (2011). Metabolomics in toxicology: preclinical and clinical applications. Toxicol Sci, 120 Suppl 1, S146-170. https://doi.org/10.1093/toxsci/kfq358
    Rodrigues, J. A., Narasimhamurthy, R. K., Joshi, M. B., Dsouza, H. S., & Mumbrekar, K. D. (2022). Pesticides Exposure-Induced Changes in Brain Metabolome: Implications in the Pathogenesis of Neurodegenerative Disorders. Neurotoxicity Research, 40(5), 1539-1552. https://doi.org/10.1007/s12640-022-00534-2
    Rose, W. C. (1957). The amino acid requirements of adult man. Nutr Abstr Rev, 27(3), 631-647.
    Rubio Gomez, M. A., & Ibba, M. (2020). Aminoacyl-tRNA synthetases. Rna, 26(8), 910-936. https://doi.org/10.1261/rna.071720.119
    Rurik, M., Alka, O., Aicheler, F., & Kohlbacher, O. (2020). Metabolomics Data Processing Using OpenMS. In S. Li (Ed.), COMPUTATIONAL METHODS AND DATA ANALYSIS FOR METABOLOMICS (Vol. 2104, pp. 49-60). https://doi.org/10.1007/978-1-0716-0239-3_4
    10.1007/978-1-0716-0239-3
    Saka, W. A., Akhigbe, R. E., Abidoye, A. O., Dare, O. S., & Adekunle, A. O. (2021). Suppression of uric acid generation and blockade of glutathione dysregulation by L-arginine ameliorates dichlorvos-induced oxidative hepatorenal damage in rats. Biomedicine & Pharmacotherapy, 138, 111443. https://doi.org/https://doi.org/10.1016/j.biopha.2021.111443
    Salyha, N., & Salyha, Y. (2018). Protective role of l-glutamic acid and l-cysteine in mitigation the chlorpyrifos-induced oxidative stress in rats. Environmental Toxicology and Pharmacology, 64, 155-163. https://doi.org/https://doi.org/10.1016/j.etap.2018.10.010
    Schicho, R., Shaykhutdinov, R., Ngo, J., Nazyrova, A., Schneider, C., Panaccione, R., Kaplan, G. G., Vogel, H. J., & Storr, M. (2012). Quantitative Metabolomic Profiling of Serum, Plasma, and Urine by 1H NMR Spectroscopy Discriminates between Patients with Inflammatory Bowel Disease and Healthy Individuals. Journal of Proteome Research, 11(6), 3344-3357. https://doi.org/10.1021/pr300139q
    Schieber, M., & Chandel, Navdeep S. (2014). ROS Function in Redox Signaling and Oxidative Stress. Current Biology, 24(10), R453-R462. https://doi.org/https://doi.org/10.1016/j.cub.2014.03.034
    Schroader, J. H., Handley, M. T., & Reddy, K. (2023). Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. Wiley Interdiscip Rev RNA, 14(5), e1790. https://doi.org/10.1002/wrna.1790
    Seki, M., Nakayama, M., Sakoh, T., Yoshitomi, R., Fukui, A., Katafuchi, E., Tsuda, S., Nakano, T., Tsuruya, K., & Kitazono, T. (2019). Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3–5 chronic kidney disease: a prospective observational study. BMC Nephrology, 20(1), 115. https://doi.org/10.1186/s12882-019-1306-1
    Selmi, S., Rtibi, K., Grami, D., Sebai, H., & Marzouki, L. (2018). Malathion, an organophosphate insecticide, provokes metabolic, histopathologic and molecular disorders in liver and kidney in prepubertal male mice. Toxicology Reports, 5, 189-195. https://doi.org/https://doi.org/10.1016/j.toxrep.2017.12.021
    SGS. (2021). https://msn.sgs.com/Knowledge/FOOD/6030
    Shah, M. D., & Iqbal, M. (2010). Diazinon-induced oxidative stress and renal dysfunction in rats. Food and Chemical Toxicology, 48(12), 3345-3353. https://doi.org/https://doi.org/10.1016/j.fct.2010.09.003
    Smith, C. A., Want, E. J., O'Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS:  Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Analytical Chemistry, 78(3), 779-787. https://doi.org/10.1021/ac051437y
    Smolinska, A., Posma, J. M., Blanchet, L., Ampt, K. A. M., Attali, A., Tuinstra, T., Luider, T., Doskocz, M., Michiels, P. J., Girard, F. C., Buydens, L. M. C., & Wijmenga, S. S. (2012). Simultaneous analysis of plasma and CSF by NMR and hierarchical models fusion. Analytical and Bioanalytical Chemistry, 403(4), 947-959. https://doi.org/10.1007/s00216-012-5871-4
    Solomon, K. R. (2020). Estimated exposure to glyphosate in humans via environmental, occupational, and dietary pathways: an updated review of the scientific literature [https://doi.org/10.1002/ps.5717]. Pest Management Science, 76(9), 2878-2885. https://doi.org/https://doi.org/10.1002/ps.5717
    Sombatsawat, E., Barr, D. B., Panuwet, P., Robson, M. G., & Siriwong, W. (2021). Pesticide-induced changes in cholinesterase activity and chronic kidney disease of unknown etiology among farmers in Nakhon Ratchasima, Thailand. HUMAN AND ECOLOGICAL RISK ASSESSMENT, 27(8), 2038-2050. https://doi.org/10.1080/10807039.2021.1944050
    Stevens, L. A., Coresh, J., Greene, T., & Levey, A. S. (2006). Assessing Kidney Function — Measured and Estimated Glomerular Filtration Rate. New England Journal of Medicine, 354(23), 2473-2483. https://doi.org/10.1056/NEJMra054415
    Sturm, M., Bertsch, A., Gröpl, C., Hildebrandt, A., Hussong, R., Lange, E., Pfeifer, N., Schulz-Trieglaff, O., Zerck, A., Reinert, K., & Kohlbacher, O. (2008). OpenMS – An open-source software framework for mass spectrometry. BMC Bioinformatics, 9(1), 163. https://doi.org/10.1186/1471-2105-9-163
    Sule, R. O., Condon, L., & Gomes, A. V. (2022). A Common Feature of Pesticides: Oxidative Stress—The Role of Oxidative Stress in Pesticide-Induced Toxicity. Oxidative Medicine and Cellular Longevity, 2022, 5563759. https://doi.org/10.1155/2022/5563759
    Sumner, L. W., Amberg, A., Barrett, D., Beale, M. H., Beger, R., Daykin, C. A., Fan, T. W. M., Fiehn, O., Goodacre, R., Griffin, J. L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A. N., Lindon, J. C., Marriott, P., Nicholls, A. W., . . . Viant, M. R. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3), 211-221. https://doi.org/10.1007/s11306-007-0082-2
    Sun, X. W., Xu, W., Zeng, Y., Hou, Y. R., Guo, L., Zhao, X. J., & Sun, C. H. (2014). Metabonomics evaluation of urine from rats administered with phorate under long-term and low-level exposure by ultra-performance liquid chromatography-mass spectrometry. JOURNAL OF APPLIED TOXICOLOGY, 34(2), 176-183. https://doi.org/10.1002/jat.2848
    Sung, J.-M., Chang, W.-H., Liu, K.-H., Chen, C. Y., Mahmudiono, T., Wang, W.-R., Hsu, H.-C., Li, Z.-Y., & Chen, H.-L. (2022). The Effect of Co-Exposure to Glyphosate, Cadmium, and Arsenic on Chronic Kidney Disease. Exposure and Health. https://doi.org/10.1007/s12403-021-00451-3
    Tailor, P., Raman, T., Garganta, C. L., Njalsson, R., Carlsson, K., Ristoff, E., & Carey, H. B. (2005). Recurrent High Anion Gap Metabolic Acidosis Secondary to 5-Oxoproline (Pyroglutamic Acid). American Journal of Kidney Diseases, 46(1), e4-e10. https://doi.org/10.1053/j.ajkd.2005.03.021
    Tang, T., Zhou, H., Wang, L., Zhao, J., Ma, L., Ling, J., Li, G., Huang, W., Li, P., & Zhang, Y. (2022). Post-harvest Application of Methyl Jasmonate or Prohydrojasmon Affects Color Development and Anthocyanins Biosynthesis in Peach by Regulation of Sucrose Metabolism [Original Research]. Frontiers in Nutrition, 9. https://www.frontiersin.org/articles/10.3389/fnut.2022.871467
    Tanvir, E. M., Afroz, R., Chowdhury, M., Gan, S. H., Karim, N., Islam, M. N., & Khalil, M. I. (2016). A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats. Hum Exp Toxicol, 35(9), 991-1004. https://doi.org/10.1177/0960327115614384
    Tapp, H. S., & Kemsley, E. K. (2009). Notes on the practical utility of OPLS. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 28(11), 1322-1327. https://doi.org/10.1016/j.trac.2009.08.006
    Tian, H., Li, B., & Shui, G. (2017). Untargeted LC–MS Data Preprocessing in Metabolomics. Journal of Analysis and Testing, 1(3), 187-192. https://doi.org/10.1007/s41664-017-0030-8
    Tran, H., McConville, M., & Loukopoulos, P. (2020). Metabolomics in the study of spontaneous animal diseases. Journal of Veterinary Diagnostic Investigation, 32(5), 635-647. https://doi.org/10.1177/1040638720948505
    Tsai, C.-W., Ting, I.-W., Yeh, H.-C., & Kuo, C.-C. (2017). Longitudinal change in estimated GFR among CKD patients: A 10-year follow-up study of an integrated kidney disease care program in Taiwan. PLoS One, 12(4), e0173843.
    Tsai, S.-F., Lin, M.-H., Hsu, C.-C., Wu, M.-J., Wang, I. K., & Chen, C.-H. (2022). Trends of kidney transplantation from the 2020 annual report on kidney disease in Taiwan. Journal of the Formosan Medical Association, 121, S20-S29. https://doi.org/https://doi.org/10.1016/j.jfma.2021.12.009
    US EPA, O., Office of Pesticide Programs. (2013). https://www.epa.gov/sites/default/files/documents/rmpp_6thed_ch5_organophosphates.pdf
    Vázquez-Fresno, R., Llorach, R., Urpi-Sarda, M., Lupianez-Barbero, A., Estruch, R., Corella, D., Fitó, M., Arós, F., Ruiz-Canela, M., Salas-Salvadó, J., & Andres-Lacueva, C. (2015). Metabolomic Pattern Analysis after Mediterranean Diet Intervention in a Nondiabetic Population: A 1- and 3-Year Follow-up in the PREDIMED Study. Journal of Proteome Research, 14(1), 531-540. https://doi.org/10.1021/pr5007894
    Vermeersch, K. A., & Styczynski, M. P. (2013). Applications of metabolomics in cancer research. J Carcinog, 12, 9. https://doi.org/10.4103/1477-3163.113622
    Viant, M. R., Kurland, I. J., Jones, M. R., & Dunn, W. B. (2017). How close are we to complete annotation of metabolomes? Current Opinion in Chemical Biology, 36, 64-69. https://doi.org/https://doi.org/10.1016/j.cbpa.2017.01.001
    Wang, D. T., Guo, S. P., He, H. X., Gong, L., & Cui, H. Z. (2020). Gut Microbiome and Serum Metabolome Analyses Identify Unsaturated Fatty Acids and Butanoate Metabolism Induced by Gut Microbiota in Patients With Chronic Spontaneous Urticaria. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 10, Article 24. https://doi.org/10.3389/fcimb.2020.00024
    Wang, H.-P., Liang, Y.-J., Zhang, Q., Long, D.-X., Li, W., Li, L., Yang, L., Yan, X.-Z., & Wu, Y.-J. (2011). Changes in metabolic profiles of urine from rats following chronic exposure to anticholinesterase pesticides. Pesticide Biochemistry and Physiology, 101(3), 232-239. https://doi.org/https://doi.org/10.1016/j.pestbp.2011.09.011
    Wang, X. S., Jones, D. R., Shaw, T. I., Cho, J. H., Wang, Y. Y., Tan, H. Y., Xie, B., Zhou, S. P., Li, Y. X., & Peng, J. M. (2018). Target-Decoy-Based False Discovery Rate Estimation for Large-Scale Metabolite Identification. JOURNAL OF PROTEOME RESEARCH, 17(7), 2328-2334. https://doi.org/10.1021/acs.jproteome.8b00019
    Warady, B. A., Abraham, A. G., Schwartz, G. J., Wong, C. S., Muñoz, A., Betoko, A., Mitsnefes, M., Kaskel, F., Greenbaum, L. A., Mak, R. H., Flynn, J., Moxey-Mims, M. M., & Furth, S. (2015). Predictors of Rapid Progression of Glomerular and Nonglomerular Kidney Disease in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort. American Journal of Kidney Diseases, 65(6), 878-888. https://doi.org/https://doi.org/10.1053/j.ajkd.2015.01.008
    Weckwerth, W. (2010). Metabolomics: an integral technique in systems biology. Bioanalysis, 2(4), 829-836. https://doi.org/10.4155/bio.09.192
    Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., . . . Querengesser, L. (2007). HMDB: the Human Metabolome Database. Nucleic Acids Res, 35(Database issue), D521-526. https://doi.org/10.1093/nar/gkl923
    Worley, B., & Powers, R. (2013). Multivariate Analysis in Metabolomics. Curr Metabolomics, 1(1), 92-107. https://doi.org/10.2174/2213235x11301010092
    Yan, Q., Paul, K. C., Walker, D. I., Furlong, M. A., Del Rosario, I., Yu, Y., Zhang, K., Cockburn, M. G., Jones, D. P., & Ritz, B. R. (2021). High-Resolution Metabolomic Assessment of Pesticide Exposure in Central Valley, California. Chemical Research in Toxicology, 34(5), 1337-1347. https://doi.org/10.1021/acs.chemrestox.0c00523
    Yu, H., Xing, S., Nierves, L., Lange, P. F., & Huan, T. (2020). Fold-Change Compression: An Unexplored But Correctable Quantitative Bias Caused by Nonlinear Electrospray Ionization Responses in Untargeted Metabolomics. Analytical Chemistry, 92(10), 7011-7019. https://doi.org/10.1021/acs.analchem.0c00246
    Yu, L., Li, K. F., & Zhang, X. Y. (2017). Next-generation metabolomics in lung cancer diagnosis, treatment and precision medicine: mini review. ONCOTARGET, 8(70), 115774-115786. https://doi.org/10.18632/oncotarget.22404
    Zhang, B., Hu, S., Baskin, E., Patt, A., Siddiqui, J. K., & Mathé, E. A. (2018). RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites. Metabolites, 8(1). https://doi.org/10.3390/metabo8010016
    Zhang, P., Zhu, W., Wang, D., Yan, J., Wang, Y., Zhou, Z., & He, L. (2017). A combined NMR- and HPLC-MS/MS-based metabolomics to evaluate the metabolic perturbations and subacute toxic effects of endosulfan on mice. Environmental Science and Pollution Research, 24(23), 18870-18880. https://doi.org/10.1007/s11356-017-9534-z
    Zhang, X.-w. (2020). Mass spectrometry-based metabolomics in health and medical science: a systematic review. RSC Advances.
    Zhang, Y., Chen, S., Yuan, M., Xu, Y., & Xu, H. (2022). Gout and Diet: A Comprehensive Review of Mechanisms and Management. Nutrients, 14(17). https://doi.org/10.3390/nu14173525
    Zhe Hui, H., Jane, C., & Dawn, T. (2017). What is an ROC curve? Emergency Medicine Journal, 34(6), 357. https://doi.org/10.1136/emermed-2017-206735
    Zhou, B., Wang, J. L., & Ressom, H. W. (2012). MetaboSearch: Tool for Mass-Based Metabolite Identification Using Multiple Databases. PLOS ONE, 7(6). https://doi.org/10.1371/journal.pone.0040096
    Zhu, S., Zhang, F., Shen, A. W., Sun, B., Xia, T. Y., Chen, W. S., Tao, X., & Yu, S. Q. (2021). Metabolomics Evaluation of Patients With Stage 5 Chronic Kidney Disease Before Dialysis, Maintenance Hemodialysis, and Peritoneal Dialysis. FRONTIERS IN PHYSIOLOGY, 11, Article 630646. https://doi.org/10.3389/fphys.2020.630646
    Zukunft, S., Prehn, C., Rohring, C., Moller, G., de Angelis, M. H., Adamski, J., & Tokarz, J. (2018). High-throughput extraction and quantification method for targeted metabolomics in murine tissues. METABOLOMICS, 14(1). https://doi.org/10.1007/s11306-017-1312-x
    工商時報. (2021). https://ctee.com.tw/news/life/497760.html
    中央健保署. (2019). 慢性腎臟病防治. 衛生福利部. https://www.nhi.gov.tw/Content_List.aspx?n=D5CC89AE36D48E5E&topn=787128DAD5F71B1A
    中央健康保險署. (2015). 全民健康保險初期慢性腎臟病醫療給付改善方案. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.nhi.gov.tw/Resource/webdata/26254_1_Early%20CKD%E8%A8%88%E7%95%AB.pdf
    中研院. (2022). https://daais.sinica.edu.tw/pages/529
    台中榮民總醫院. (2018). https://www.vghtc.gov.tw/UnitPage/UnitContentView?WebMenuID=e3590bb1-ef08-4ef9-9156-3044649fc5bf&UnitID=73b2dfcc-ac8e-4487-a9f8-65772b17cbc9&UnitDefaultTemplate=1
    台灣腎臟醫學會. (2015). 台灣慢性腎臟病臨床診療指引.
    行政院農業委員會. (2004). https://www.coa.gov.tw/ws.php?id=3985
    行政院農業委員會. (2007). https://www.kdais.gov.tw/ws.php?id=3437
    行政院農業委員會動植物防疫檢疫局. (2021). file:///C:/Users/yuchi/Downloads/%E5%8C%96%E5%AD%B8%E8%BE%B2%E8%97%A5%E5%8D%81%E5%B9%B4%E6%B8%9B%E5%8D%8A%E8%A1%8C%E5%8B%95%E6%89%8B%E5%86%8A(%E7%AC%AC3%E7%89%88)(2021%E5%B9%B47%E6%9C%88%E5%87%BA%E7%89%88).pdf
    行政院農業部. (2007). https://www.kdais.gov.tw/ws.php?id=3437
    行政院衛生署食品藥物管理署. (2022). https://www.fda.gov.tw/TC/siteContent.aspx?sid=12094
    吳木興. (2004). https://hdl.handle.net/11296/zsk65a
    呂振富. (2011). https://www.labmed.org.tw/knowledge_1.asp?mno=49
    李依文. (2022). Retrieved 6 16, from https://www.foodnext.net/news/newsnow/paper/5357717190
    食品藥物研究年報. (2020). https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=22195718-202112-202203150022-202203150022-72-86&PublishTypeID=P001
    高雄榮民總醫院腎臟科. (2022). https://org.vghks.gov.tw/neph/News_Content.aspx?n=F3FE8604242F27A6&sms=CEC9E3A5AB1491A8&s=EA3A82E1C39D6AD6
    國家衛生研究院, & 台灣腎臟醫學會. (2019). 2019年台灣腎病年報. 財團法人國家衛生研究院
    國家環境毒物研究中心. (2014). http://nehrc.nhri.org.tw/foodsafety/ref/2013Pesticides_1031014.pdf
    陳苓怡, 郭美娟, 黃尚志, 蔡哲嘉, & 陳鴻鈞. (2012). 臨床評估腎臟功能方法之優缺點. 內科學誌, 23(1), 34-41.
    馮鈞政. (2010). https://library.ym.edu.tw:444/search~S8?/a{u99AE}+{u921E}{u653F}/a{21612d}{215d4c}{214241}/-3%2C-1%2C0%2CB/frameset&FF=a{21612d}{215d4c}{214241}&1%2C1%2C
    楊文中, 鄧秀蘭, & 顏妙芬. (2010). 以實證探討慢性腎臟病低蛋白飲食成效 [Effects of Low Protein Diet with Chronic Kidney Disease: An evidence-based Approach]. 臺灣腎臟護理學會雜誌, 9(2), 22-33. https://www.AiritiLibrary.com/Publication/Index/17267404-201012-201102160006-201102160006-22-33
    臺大醫院. (2016). 腎絲球濾過率與慢性腎臟病分期. https://www.hch.gov.tw/hch/MedicalTeams/HealthEducationDetail.aspx?MNO=C016&ID=7527
    劉怡馨、蔡佳珊. (2018). https://www.newsmarket.com.tw/blog/111676/
    衛生福利部食品藥物管理署. (2019). https://www.fda.gov.tw/TC/PublishResearch.aspx
    衛生福利部食品藥物管理署. (2022). https://www.fda.gov.tw/TC/siteContent.aspx?sid=12094
    盧敏琪(MIN-, 陳. H.-Y. C. 廖. Y.-C. L. 張. C.-L. C. 楊. C.-H. Y. 蔡. C.-F. T. 魏. (2020). https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=22195718-202112-202203150022-202203150022-72-86&PublishTypeID=P001
    蕭明熙. (2018). In T. F. HUANG (Ed.).
    蘇俞丞. (2007). 低風險農藥簡介. 豐年雜誌.

    無法下載圖示 校內:2029-02-02公開
    校外:2029-02-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE