簡易檢索 / 詳目顯示

研究生: 陳彥博
Chen, Yen-Bo
論文名稱: 降雨強度對於地下水儲存量影響之研究-以屏東平原為例
The Influence of Rainfall Intensity on Groundwater Storage-the Case Study of Pingtung Plain
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 河川流量基流量消退特徵地下水儲存量
外文關鍵詞: streamflow, base-flow, recession characteristics, groundwater storage
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 河川流量及地下水儲存量為人們賴以維生的主要可用淡水資源,本研究探討台灣南部流域河川消退特徵及屏東平原地下水儲存量,期能作為台灣水資源管理參考。首先在流域消退特徵方面,本研究參考Brutsaert(2008)低流消退分析模式,制定低流穩定期及常態狀況消退片段篩選模式,參數化台灣南部流域河川的消退曲線,以特徵化流域之河川流量與基流量消退特徵,參數化結果顯示,流域單一消退事件難以描述流域整體消退特徵,並且在台灣南部各流域之消退時間指數空間分佈情形中,三地門流量站有較特殊的流量消退特徵;總體而言,河川流量相較於基流量有較低的消退時間指數,並且流域之低流穩定期消退期間,消退時間指數較流域之常態狀況來得高。
    在地下水儲存量方面,台灣南部各主要流域中,以屏東平原流量站及雨量站資料較充足、集水區範圍寬廣,因此針對屏東平原進行地下水儲存量探討。本研究考量枯水期之地下水殘存體積,利用基流量歷線推估週期性地下水儲存量,以建立水文週期概念模式,並藉由概念模式之累計線形量化結果,探討高屏溪流域各集水區地下水儲存量與降雨量之間的週期性變動情形,以及趨勢變化特徵。透過降雨強度進行基礎基流量進行量化分隔,量化結果顯示,在降雨事件停止後,基礎基流量之體積隨著時間增長而減少,且隨著單日降雨強度增高,對於基礎基流量之貢獻比例減少。

    關鍵詞:河川流量、基流量、消退特徵、地下水儲存量。

    SUMMARY

    According to the fact that streamflow and groundwater storage are mainly obtainable freshwater resources which human cannot live without, this research looks into the recession characteristics of the southern Taiwan and the groundwater storage of Pingtung Plain, hoping to provide as a reference to the freshwater resources management in Taiwan.
    In terms of the recession characteristics, this research takes the low flow analysis model by Brutsaert (2008) as reference, aims to formulate a flitering process for low flow steady period model and normal condition model, to parameterize the recession curve of river basins in southern Taiwan, and finally to characteristize the recession state of the streamflow and baseflow. Based on the parameterized results, two assumptions can be made. Firstly, a single incident occurring in the river basin can hardly display the recession characteristics. Secondly, among all the researching area, the most special recession characteristics occurs in San-Ti-Men flow station. Generally speaking, recession index in streamflow is lower than the one in the baseflow, and the time exponential during the low flow steady period model is higher than the one during the normal condition model.
    In terms of the groundwater storage, we choose the most sufficient data from the rain stations as well as the streamflow stations in Pingtung Plain in southern Taiwan to evaluate the remaining volume of the groundwater during the low flow period. A hydrologically period conceptual model is established to estimate the groundwater storage periodically according the baseflow hydrpgraph. Based on the above concept, the statistically cumulative and quantified results can be obtained including the periodically changing situations and the changing characteristics of the trend between the groundwater storage and the rainfall in each catchment of Gaoping River. When quantized and divided by various levels of rainfall intensity and the basic baseflow, the results show that, after the rain, the volume of the basic baseflow decreases as time passes by. The proportion providing to the basic baseflow decreases when the single day rainfall intensity goes higher.
    Key words: streamflow, base-flow, recession characteristics, groundwater storage

    目錄 中英文摘要 I 目錄 VI 誌謝 IX 表目錄 X 圖目錄 XI 符號表 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 前人文獻回顧 3 1.2.1低流統計與消退分析文獻 3 1.2.2地下水儲存量推估相關文獻 4 1.3 研究方法與流程 5 第二章 理論模式 6 2.1 水平衡理論 6 2.2 消退分析模式 7 2.2.1Brutsaert (2008)低流分析模式 8 2.2.2低流穩定期消退片段篩選模式 10 2.2.3常態狀況消退片段篩選模式 11 2.3 基流資料估計法 12 2.4 水文週期概念 17 2.4.1地下水儲存累計量推估 17 2.4.2地下水殘存量推估 19 2.5 降雨強度區間分隔概念 20 2.5.1 雨量分級 20 2.5.2 不同時間長度對於基流體積之影響 21 第三章 研究區域 23 3.1 研究區域概述 23 3.2 流量站資料 24 3.3 雨量站資料 26 第四章 結果與討論 28 4.1 以消退分析模式評估流域消退特徵 28 4.1.1低流穩定期消退片段篩選模式 28 4.2 流域消退特徵評估 31 4.2.1台灣南部流域消退特徵探討 31 4.3 以水文週期概念模式評估流域地下水儲存量與不同取樣時間對於基流體積之影響 34 4.3.1 隘寮溪集水區 36 4.3.2 荖濃溪集水區 41 4.3.3 旗山溪集水區 45 4.3.4 高屏溪集水區 50 4.3.5 東港溪集水區 55 4.3.6 林邊溪集水區 60 4.4 屏東平原主要集水區基礎基流量比較 65 第五章 結論與建議 66 5.1 研究結論 65 5.2 建議 68 參考文獻 69 附錄A 流量消退模式參數化分析結果 80 附錄B 屏東平原主要流域之雨量站資料 86 附錄C 屏東平原地下水儲存量週期性量化成果 90 附錄D 不同降雨強度區間對於基礎基流量分析結果 101

    參考文獻
    1. Allen, R., and W. Ingram (2002), “Constraints on future changes in climate and the hydrologic cycle,” Nature, 419 pp.224–231.
    2. Alley, W. M., R. W. Healy, J. W. LaBaugh, and T. E. Reilly (2002), Flow and storage in groundwater systems, Science, 296(5575), 1985–1990.
    3. Barnes, B.S., 1939. The structure of discharge recession curves. Transactions of American Geophysical Union 20, p. 721-725.
    4. Biswal, B., and M. Marani (2010), Geomorphological origin of recession curves, Geophys. Res. Lett., 37, L24403, doi:10.1029/2010GL045415.
    5. Biswal, B., and D. Nagesh Kumar (2014), Study of dynamic behavior of recession curves, Hydrol. Processes, 28(3), 784–792.
    6. Bredehoeft, J. D., S. S. Papadopulos, and H. J. Cooper (1982), Groundwater: The water budget myth, Sci. Basis Water Resour. Manage.,51-57.
    7. Boussinesq, J., 1877. Essa sur latheories des eaux courantes. Memoires presentes par divers savants a l' Academic des Sciences de l' Institut national de France. Tome XXIII, no. 1.
    8. Boughton, W.C. and Freebairn, D.M., (1985), “Hydrograph recession characteristics of some small agricultural catchments,” Australian Journal of Soil Research, 23 pp.373-382.
    9. Brutsaert, W., and Nieber, J.L. (1977), “Regionalized drought flow hydrographs from a mature glaciated plateau,” Water Resources Research, 13 (3) pp.637~643.
    10. Brutsaert, W. (2008), “Long-term groundwater storage trends estimated from streamflow records: Climatic perspective,” Water Resources Research, 44 W02409.
    11. Brutsaert, W., Sugita, M. (2008), “Is Mongolia’s groundwater increasing or decreasing? The case of the Kherlen River basin,” Hydrological Sciences Journal, 53 (6) pp.1221~1229.
    12. Brutsaert, W., and T. Hiyama (2012), The determination of permafrost thawing trends from long-term streamflow measurements with an application in eastern Siberia, J. Geophys. Res., 117, D22110, doi:10.1029/2012JD018344.
    13. Brutsaert, W. and J. P. Lopez (1998), Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains, Water Resour. Res., 34(2), 233–240.
    14. Brutsaert W. (2010), “ Annual drought flow and groundwater storage trends in the eastern half of the United States during the past two-third century,” Theoretical and Applied Climatology, 100(1) pp.93~103.
    15. Brutsaert W. (2012), “Are the North American deserts expanding? Some climate signals from groundwater storage conditions,” Ecohydrology, 5(5) pp.541–9.
    16. Castle, S. L., B. F. Thomas, J. T. Reager, M. S. Rodell, C. Swenson, and J. S. Famiglietti (2014), Groundwater depletion during drought threatens future water security of the Colorado River Basin, Geophys. Res. Lett., 41, 5904–5911, doi:10.1002/2014GL061055.
    17. Chiew, F.H.S., Teng, J., Vaze, J., Post, D.A., Perraud, J.M., Kirono, D.G.C., Viney, N.R. (2009), “Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modeling method,” Water Resources Research, 45 W10414.
    18. Chow, V.T., 1964. Handbook of applied hydrology. New York, McGraw-hill, [variously paged].
    19. Christensen, N.S., Lettenmaier, D.P. (2007), “A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin,” Hydrology and Earth System Sciences, 11 pp.1417–1434.
    20. Clark, M. P., D. E. Rupp, R. A. Woods, H. J. Tromp-van Meerveld, N. E. Peters, and J. E. Freer (2009), Consistency between hydrological models and field observations: Linking processes at the hillslope scale to hydrological responses at the watershed scale, Hydrol. Processes, 23(2), 311–319.
    21. Costelloe, J. F., T. J. Peterson, K. Halbert, A. W. Western, and J. J. McDonnell (2014), Groundwater surface mapping informs sources of catchment base flow, Hydrol. Earth Syst. Sci. Discuss., 11, 12,405–12,441.
    22. Dooge, J. C. (1986), Looking for hydrologic laws, Water Resour. Res., 22(9S), 46S–58S.
    23. Döll, P., Schmied, H.M., Schuh, C., Portmann, F.T., and Eicker, A. (2014), “Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites,” Water Resources Research, 50 pp.5698~5720.
    24. Famiglietti, J. S. (2014), The global groundwater crisis, Nat. Clim. Change, 4(11), 945–948.
    25. Famiglietti, J. S., and M. Rodell (2013), Water in the balance, Science, 340(6138), 1300–1301.
    26. Famiglietti, J. S., Lo M., Ho S. L., Bethune J., Anderson K. J., Syed T. H., Swenson S. C., Linage C. R., and Rodell M. (2011), “Satellites measure recent rates of groundwater depletion in California’s Central Valley,” Geophysical Research Letters, 38 L03403.
    27. Fan, Y., H. Li, and G. Miguez-Macho (2013), Global patterns of groundwater table depth, Science, 339(6122), 940–943.
    28. Fan , Y., Y.Chen, Y. Liu, W. Li (2013), “Variation of baseflows in the headstreams of the Tarim Basin during 1960-2007,” Journal of Hydrology, 487 pp.98-108.
    29. Franchini, M. and Pacciani, M., (1991), “Comparative analysis of several conceptual rainfall-runoff models,” Journal of Hydrology, 122 pp.161-219.
    30. Gao, Z., L. Zhang, L. Cheng, X. Zhang, T. Cowan, W. Cai, and W. Brutsaert (2015), Groundwater storage trends in the Loess Plateau of China estimated from streamflow records, J. Hydrol., 530, 281–290.
    31. Goderniaux, P., Brouyère, S., Fowler, H.J., Blenkinsop, S., Therrien, R., Orban, P., Dassargues, A. (2009), “Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves,” Journal of Hydrology, 373 (1–2) pp.122–138.
    32. Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., et al. (2011) “Beneath the surface of global change: impacts of climate change on groundwater,” Journal of Hydrology, 405 (3–4) pp.532–560.
    33. Hall, F.R. (1968), “Base flow recessions--a review,” Water Resources Research, 4(5) pp.973-983.
    34. Harman, C. J., M. Sivapalan, and P. Kumar (2009), Power law catchment-scale recessions arising from heterogeneous linear small-scale dynamics, Water Resour. Res., 45, W09404, doi:10.1029/2008WR007392.
    35. Hayhoe, K., et al. (2007), “Past and future changes in climate and hydrological indicators in the US,” Climate Dynamics, 28 pp.381–407.
    36. Hertzler, R. A., Jr. (1939), “Engineering aspects of the influence of forests on mountain streams,” Civil engineering, 9 pp.487~489.
    37. Hodgkins, G., T. Dudley, and R. Huntington (2003), “Changes in the number and timing of high river flows in New England over the 20th century,” Journal of Hydrology, 278 pp.244–252.
    38. Hughes, J.D., Petrone, K.C., and Silberstein, R.P. (2012), “Drought, Groundwater Storage and Declining Stream Flow in Southwestern Australia,” Geophysical Research Letters, 39(3) L03408.
    39. Jasechko, S., S. J. Birks, T. Gleeson, Y. Wada, P. J. Fawcett, Z. D. Sharp, J. J. McDonnell, and J. M. Welker (2014), The pronounced seasonality of global groundwater recharge, Water Resour. Res. 50, 8845–8867, doi:10.1002/2014WR015809.
    40. Kirchner, J.W. (2009), “Catchments as simple dynamical systems:Catchment characterization, rainfall-runoff modeling, and doing hydrology backward,” Water Resources Research, 45 pp.5577~5596.
    41. Klove, B., et al. (2014), Climate change impacts on groundwater and dependent ecosystems, J. Hydrol., 518, 250–266.
    42. Knisel, W.G., (1963), “Baseflow recession analysis for comparison of drainage basin and geology,” Journal of Geophysical Research, 68 pp.3649-3653.
    43. Korkmaz, N., (1990), “The estimation of groundwater recharge from spring hydrographs,” Hydrological Sciences Journal, 35(2(4)) pp.209-217.
    44. Krakauer, N. Y. and Temimi, M. (2011) “Stream recession curves and storage variability in small watersheds, Hydrology and Earth System Sciences, 15 pp.2377–2389
    45. Kulandaiswamy, V.C., and Seetharaman, S. (1969), “A note on Barnes’ method of hydrograph separation,” Journal of Hydrology, 9 pp.222~229.
    46. Lin, C.T., H.H. Chen, T. Kume, C.R. Chiou (2010), “Comparsion of potential water supply and demand in Taiwan,” Water International, 35 pp.165~176.
    47. Linsley, R.K., Jr., Kohler, M.A., and Paulhus, J.L.H., 1982. Hydrology for Engineers(3rd ed.). McGraw-Hill, New York. 508 pp.
    48. Lyon, S.W., Destouni, G., Giesler, R., Humborg, C., Mörth, M., Seibert, J., and Karlsson, J., Troch, P.A. (2009), “Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis,” Hydrology and Earth System Sciences, 13 pp.595~604.
    49. Maillet, E., 1905. Essai d'hydraulique souterraine et fluviale. Libraire Sci., A. Herman, Paris.
    50. Malvicini, C. F., Steenhuis, T. S., Walter, M. T., Parlange, J. Y., and Walter, M. F. (2005), “Evaluation of spring flow in the uplands of Matalom, Leyte, Philippines, Advances in Water Resources, 28 pp.1083–1090.
    51. McDonnell, J., D. Brammer, C. Kendall, N. Hjerdt, L. Rowe, M. Stewart, and R. Woods (1998), Flow pathways on steep forested hillslopes: The tracer, tensiometer and trough approach, in Environmental Forest Science, edited by S. Kyoji, pp. 463–474, Springer, Netherlands.
    52. McNutt, M. (2014), The drought you can’t see, Science, 345(6204), 1543–1543.
    53. Mendoza, G.F., Steenhuis, T.S., Walter, M.T., and Parlange, J.V. (2003), “Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis,” Journal of Hydrology, 279 pp.57~69.
    54. Merz, R., J. Parajka, and G. Blöschl (2011), “Time stability of catchment model parameters: Implications for climate impact analyses,” Water Resources Research, 47, W02531.
    55. Milly, P. C. D., J. Betancourt, M. Falkenmark, R. Hirsch, Z. W. Kundzewicz, P. Lettenmaier, and R. J. Stouffer (2008), “Stationarity is dead: Whither water management?,” Science, 319 pp.573–574.
    56. Mutzner, R., E. Bertuzzo, P. Tarolli, S. V. Weijs, L. Nicotina, S. Ceola, N. Tomasic, I. Rodriguez-Iturbe, M. B. Parlange, and A. Rinaldo (2013), Geomorphic signatures on Brutsaert base flow recession analysis, Water Resour. Res., 49, 5462–5472, doi:10.1002/wrcr.20417.
    57. Nash, J.E. (1960). “A unit hydrograph study, with particular reference to British catchments,” Proceedings of the Institution of Mechanical Engineers, 17 pp.249~282.
    58. Nathan, R.J., and McMahon, T.A. (1990), “Evaluation of automated techniques for base flow and recession analysis,” Water Resources Research, 26(7) pp. 1465~1473.
    59. Nimmo, J. R., C. Horowitz, and L. Mitchell (2015), Discrete-storm water-table fluctuation method to estimate episodic recharge, Groundwater, 53(2), 282–292.
    60. Parlange, J., Stagnitti, F., Heilig, A., Szilagyi, J., Parlange, M., Steenhuis, T., Hogarth, W., Barry, D., and Li, L. (2001), “Sudden drawdown and drainage of a horizontal aquifer,” Water Resources Research, 37 pp.2097–2101, 2001.
    61. Pe˜na-Arancibia, J. L., van Dijk, A. I. J. M., Mulligan, M., and Bruijnzeel, L. A. (2010), “The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments,” Hydrology and Earth System Sciences, 14 pp.2193–2205.
    62. Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, E., Abbett, E., and Nandagopal, S. (2004), “Water Resources: Agricultural and Environmental Issues,” BioScience, 54 (10) pp.909~918.
    63. Richey, A. S., B. F. Thomas, M. H. Lo, J. T. Reager, J. S. Famiglietti, K. Voss, S. Swenson, and M. Rodell (2015), Quantifying renewable groundwater stress with GRACE, Water Resour. Res., 51, 5217–5238, doi:10.1002/2015WR017349.
    64. Richey, A. S., B. F. Thomas, M. H. Lo, J. T. Reager, J. S. Famiglietti, K. Voss, S. Swenson, and M. Rodell (2016), Reply to Comment by Sahoo et al. on ‘‘Quantifying renewable groundwater stress with GRACE’’, Water Resour. Res., 52, 4188–4192, doi:10.1002/2015WR018329.
    65. Rupp, D. E., and J. S. Selker (2006a), On the use of the Boussinesq equation for interpreting recession hydrographs from sloping aquifers, Water Resour. Res., 42, W12421, doi: 10. 1029/2006WR005080.
    66. Rupp, D. E., and J. S. Selker (2006b), Information, artifacts, and noise in dQ/dt2 Q recession analysis, Adv. Water Resour., 29(2), 154–160.
    67. Rupp, D. E., Schmidt, J., Woods, R. A., and Bidwell, V. J. (2009) “Analytical assessment and parameter estimation of a low-dimensional groundwater model,” Journal of Hydrology, 377 pp.143–154.
    68. Rutledge, A.T. (1992), “Methods of using streamflow records for estimating total and effective recharge in the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces, in Hotchkiss, W.R. and Johnson, A.I., eds., Regional aquifer systems of the United States, aquifers of the southern and eastern states,” American Water Resources Association Monograph Series, 17 pp.59~73.
    69. Shaw, S. B., T. M. McHardy, and S. J. Riha (2013), Evaluating the influence of watershed moisture storage on variations in base flow recession rates during prolonged rain-free periods in medium-sized catchments in New York and Illinois, USA, Water Resour. Res., 49, 6022–6028, doi:10.1002/wrcr.20507.
    70. Shiklomanov IA, Rodda JC. (2003), “World water resources at the beginning of the twenty-first century.” Cambridge University Press.
    71. Sklash, M. G., and R. N. Farvolden (1979), “The role of groundwater in storm runoff,” Journal of Hydrology, 43 pp.45~65.
    72. Sugita M, Brutsaert W. (2009), “recent low-flow and groundwater storage changes in upland watersheds of the Kanto region, Japan,” Journal of Hydrologic Engineering, 14(3) pp.280–5.
    73. Sugita, M., and Brutsaert, W. (2009), “Recent Low-Flow and Groundwater Storage Changes in Upland Watersheds of the Kanto Region, Japan,” Journal of Hydrologic Engineering, 14 (3) pp.280~285.
    74. Staudinger, M., Stahl, K., Seibert, J., Clark, M. P., and Tallaksen, L. M. (2011), “Comparison of hydrological model structures based on recession and low flow simulations,” Hydrology and Earth System Sciences., 15 pp.3447–3459.
    75. Stoelzle, M., K. Stahl, and M. Weiler (2013), Are streamflow recession characteristics really characteristic?, Hydrol. Earth Syst. Sci., 17(2), 817–828.
    76. Szilagyi, J., Z. Gribovszki, and P. Kalicz (2007), Estimation of catchment-scale evapotranspiration from baseflow recession data: Numerical model and practical application results, J. Hydrol., 336(1), 206–217.
    77. Teuling, A. J., Lehner, I., Kirchner, J. W., and Seneviratne, S. I. (2010), “Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment,” Water Resources Research, 46 W10502,.
    78. Troch, P., De Troch, F., and Brutsaert, W. (1993), “Effective Water-Table Depth to Describe Initial Conditions Prior to Storm Rainfall in Humid Regions,” Water Resources Research, 29, pp.427–434.
    79. Tague, C., and Grant, G.E. (2004), “A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon,” Water Resources Research, 40 W04303.
    80. Tallaksen, L. M. (1995), A review of baseflow recession analysis, J. Hydrol., 165(1), 349–370.
    81. Taylor, R. G., et al. (2013), Ground water and climate change, Nat. Clim. Change, 3(4), 322–329.
    82. Theis, C. V. (1940), The source of water derived from wells, Civ. Eng., 10(5), 277–280.
    83. Thomas, A. C., J. T. Reager, J. S. Famiglietti, and M. Rodell (2014), A GRACE-based water storage deficit approach for hydrological drought characterization, Geophys. Res. Lett., 41, 1537–1545, doi:10.1002/2014GL059323.
    84. Thomas, B. F., and J. S. Famiglietti (2015), Sustainable groundwater management in the arid Southwestern US: Coachella Valley, California, Water Resour. Manage., 29(12), 4411–4426.
    85. Thomas, B. F., R. M. Vogel, C. N. Kroll, and J. S. Famiglietti (2013), Estimation of the base flow recession constant under human interference, Water Resour. Res., 49, 7366–7379, doi:10.1002/wrcr.20532.
    86. Thomas, B. F., R. M. Vogel, and J. S. Famiglietti (2015), Objective hydrograph baseflow recession analysis, J. Hydrol., 525, 102–112.
    87. Thomas, B. F., A. Behrangi, and J. S. Famiglietti (2016), Precipitation intensity effects on groundwater recharge in the southwestern United States, Water, 8(3), 90.
    88. Thomas, B. F., F.W. Landerer, D.N. Wiese and J. S. Famiglietti (2016), A comparsion of watershed storage trends over the eastern and upper Midwestern regions of the United States,2003-2015, Water Resour. Res., 52, 6335–6347, doi:10.1002/ 2016WR018617.
    89. Tromp-van Meerveld, H. J., and J. J. McDonnell (2006a), Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res., 42, W02411, doi:10.1029/2004WR003800.
    90. Tromp-van Meerveld, H. J., and J. J. McDonnell (2006b), Threshold relations in subsurface stormflow: 1. A 147-storm analysis of the Panola hillslope, Water Resour. Res., 42, W02410, doi:10.1029/2004WR003778.
    91. Vogel, R.M., and Kroll, C.N. (1992), “Regional Geohydrologic-Geomorphic Relationships for the estimation of Low-Flow Statistics,” Water Resources Research, 28 (9) pp.2451~2458.
    92. Vogel, R. M., and C. N. Kroll (1996), Estimation of baseflow recession constants, Water Resour. Manage., 10(4), 303–320.
    93. V.U. Smakhtin (2001), “Low flow hydrology: a review,” Journal of Hydrology, 240 pp.147–186.
    94. Wada, Y., van Beek, L.P.H., van Kempen, C.M., Reckman, J.W.T.M., Vasak, S., and Bierkens, M.F.P. (2010), “Global depletion of groundwater resources,” Geophysical Research Letters, 37 L20402.
    95. Wang, D., and X. Cai (2010), Recession slope curve analysis under human interferences, Adv. Water Resour., 33(9), 1053–1061.
    96. Wang, D., and X. Cai (2009), Detecting human interferences to low flows through base flow recession analysis, Water Resour. Res., 45, W07426, doi:10.1029/2009WR007819.
    97. Wilson, E.M., 1974. Engineering Hydrology, 2nd ed., 232 pp., Macmillan, New York.
    98. Wittenberg, H. and M. Sivapalan. (1999), “Watershed groundwater balance estimation using streamflow recession and base flow separation,” Journal of Hydrology, 219 pp.20-30.
    99. Zecharias, Y.B., and Brutsaert, W. (1988), “Recession characteristics of groundwater outflow and base flow from mountainous watersheds,” Water Resources Research, 24 (10) pp.1651~1658
    100. Zhang, L., Brutsaert, W., Crosbie, R., and Potter, N. (2014), “Long-term annual groundwater storage trends in Australian catchment,” Advances in Water Resources, 74 pp.156~165.
    101. 經濟部水利署 (2000~2015) 之「水文年報與雨量年報」。
    102. 台灣省土木技師公會技師報(2011),曾浩雄技師之「台灣水資源不足之原因」。
    103. 文化部台灣大百科全書,王鑫(2009),<台灣的地形景觀>。
    104. 屏東縣政府編(1993),<屏東縣誌>。
    105. 林朝棨(1957),<台灣地形>。收於<台灣省通志稿卷-土地志:地理篇第一冊地形>
    106. 徐美玲(2008),<台灣的地形>。
    107. 李振誥、陳尉平、李如晃等人(2002),應用基流資料估計法推估台灣地下水補注量,台灣水利,第50卷,第1期,69-80頁。
    108. 高于婷、葉信富、李振誥(2015) ,以河川消退曲線特徵化流域儲水特性,礦冶,第59卷,第1期,91-100頁。
    109. 黃嘉琦、林琨達、葉信富(2017) ,近年台灣濁水溪流域地下水儲存量變化趨勢探討,中華水土保持學報,第48卷,第1期,36-43頁。
    110. 陳尉平(1999),由河川流量資料與流量歷線推估地下水補注量,國立成功大學資源工程學系碩士論文。
    111. 陳尉平(2006),應用河川流量歷線推估台灣地下水補注量,國立成功大學資源工程學系博士論文。
    112. 李佳勳(2014),台灣南部地區長時間河川流量季節性趨勢變化之研究,國立成功大學資源工程學系碩士論文。
    113. 高于婷(2015),以低流模式評估流域排水特徵及儲水特性,國立成功大學資源工程研究所碩士論文。
    114. 高楷涵(2016),流域河川消退特徵及地下水儲存量之研究,國立成功大學資源工程學系碩士論文。

    無法下載圖示 校內:2018-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE