簡易檢索 / 詳目顯示

研究生: 程海軒
Cheng, Hai-Hsuan
論文名稱: 兩階段式生物程序轉化纖維酒精醱酵殘渣為生質能源之研究
Recovery of hydrogen and methane from cellulosic bioethanol residues using a two-stage bioprocess
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 86
中文關鍵詞: 纖維生質酒精殘渣厭氧氫發酵甲烷化發酵兩階段式生物程序
外文關鍵詞: alcohol fermentation residue, anaerobic hydrogen fermentation, methanogenesis, two-stage bioenergy process
相關次數: 點閱:128下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 十八世紀以來,工業技術與科技的進步使化石燃料被快速消耗,伴隨著對環境的嚴重污染,人類對能源的需求也隨之增長,開發新興且能永續發展的綠色能源成為國際間重要的課題之一。其中,生質酒精被多數科學家認為是現階段具前瞻性的再生能源之一,然而,現有科技僅能利用纖維性生質體(Biomass)中約百分之七十五到八十的電子生產生質酒精,換句話說,約百分之二十到二十五的能量會作為殘渣廢棄。本研究的目的便是期望將纖維生質酒精的發酵殘渣進一步回收,並同時解決生質能源工業化時之環保問題。
    本研究建置一兩階段式生物程序用以處理纖維生質酒精發酵殘渣,串聯兩個CSTR 厭氧發酵反應槽,分別生產氫氣與甲烷。經由特性分析,纖維酒精發酵殘渣的COD約為23 g/L,其中百分之二十五為碳水化合物,乳酸及乙酸則分別佔有百分之十六及十四。氫發酵槽在操作四個試程之後,發現體積負荷(VLR)為46 kg COD/m3/day時有最好的產氫速率與轉化率,分別為24.95 mL H2/g VSS/hr和20.3 mL H2/g COD。在厭氧產氫的批次實驗中,基質負荷(S0/X0)與乙酸化(acetogenesis)被認為是影響產氫表現的重要因子。而在甲烷發酵槽方面,當體積負荷為4.6 kg COD/m3/day的時候,能有最高的產氣速率1.16 L CH4/L/day。纖維生質酒精殘渣中,約有百分之七十五的COD能在兩階段發酵程序中被去除,其中百分之一點三轉化為氫氣,百分之六十六則轉為甲烷,顯示此程序能將纖維生質酒精殘渣做生質能源的回收再利用,而且,對操作條件的調整將能進一步提升氫氣與甲烷的生成與回收效率。

    Bioethanol, which is produced from biomass, has become one of the most promising renewable “green energy” since scientists realized the fast consumption of fossil fuels and severe pollutions after using them. Current technologies can only utilize 75-80% of the energy during cellulosic bioethanol fermentation, which implies that 20-25% might be wasted as residues. Thus, this study has focused on the energy recovery from cellulosic bioethanol residues.
    A two-stage bioprocess treating cellulosic bioethanol residues for recovering bioenergy, in the forms of hydrogen and methane, was conducted in the study. Nearly 25% of COD in cellulosic bioethanol residues was carbohydrate, and acetate and lactate accounted for around 14% and 16%, respectively. The maximum specific H2 production rate and yield were investigated to be 24.95 mL H2/g VSS/hr and 20.3 mL H2/g COD when volumetric loading rate (VLR) was 46 kg COD/m3/day. By carrying out batch experiment, acetogenesis and S0/X0, or F/M ratio in CSTR, were found to be important factors on the efficiency of biohydrogen production. The best performance of the methane bioreactor in the view of methane production was obtained under VLR of 4.6 kg COD/m3/day, in which 1.16 L CH4/L/day and 68.6 mL CH4/g VSS/hr were achieved. Approximately 75% of the COD in the bioethanol-fermentation residues was removed, with about 1.3% and 66% of it were recovered in the forms of hydrogen and methane. Results indicate that cellulosic bioethanol residues are also suitable for hydrogen and methane fermentation, but an optimized operational condition is still needed.

    Abstract V 摘要 VII 致謝 IX Acknowledgement XIV Table of contents XVI Table of figures XIX Table of tables XXII CHAPTER 1 Introduction 1 CHAPTER 2 Literature Review 3 2.1 The trend of energy utilization and renewable energy 3 2.1.1 The importance of developing renewable energies 3 2.1.2 “Decarbonization” and the age of hydrogen 4 2.2 Biomass energy and its production technology 6 2.2.1 Overview of biomass energy 6 2.2.2 Anaerobic digestion 8 2.3 Bioethanol (fuel ethanol) fermentation 10 2.4 Biohydrogen production 12 2.4.1 Hydrogen-producing bacteria via dark fermentation 14 2.4.2 Metabolic pathway of hydrogen fermentation 17 2.4.3 Clostridium sp. and its hydrogenase 19 2.4.4 Effects on fermentative biohydrogen metabolic pathway 24 2.5 Microbial electrolysis cells (MECs) 28 2.6 Methane fermentation 29 2.6.1 Acetogenesis 30 2.7 Integrated processes 31 CHAPTER 3 Materials and Methods 35 3.1 Operation of the two-stage bioprocess 35 3.2 Fermentative biohydrogen batch tests 38 3.3 Analytical methods 39 3.4 DNA extraction and polymerase chain reaction (PCR) 40 3.5 Cloning, sequencing, and phylogenic analysis 40 CHAPTER 4 Results and Discussion 43 4.1 Characteristics of cellulosic bioethanol residue 43 4.1.1 BHP screen test for cellulosic bioethanol residue 45 4.2 Operation of hydrogen fermentation bioreactor 46 4.2.1 Summary 49 4.3 Fermentative biohydrogen batch tests 50 4.3.1 Fermentative biohydrogen tests at different S0/X0 ratio and X0 50 4.3.2 Fermentative biohydrogen tests feeding xylose/glucose 53 4.3.3 Metabolism of fermentative biohydrogen 56 4.3.4 Why B/A ratio could relate to hydrogen yield? 60 4.4 Microbial ecology analysis of hydrogen bioreactor 61 4.5 Operation of methane fermentation bioreactor 64 4.6 Overall Performance 66 CHAPTER 5 Conclusions 71 5.1 Conclusions 71 5.2 Recommendations 72 CHAPTER 6 Reference 73

    趙禹杰 (2004) 澱粉及蛋白腖複合基質厭氧發酵程序之功能評估,國立成功大學環境工程學系碩士論文。
    蕭嘉瑢 (2004) 複合基質厭氧產氫發酵生物程序操控之功能評估及分生檢測生態之研究,國立成功大學環境工程學系碩士論文。
    林佩瑩、吳怡儒、任維傑、李學霖、黃良銘 (2004) Clostridium屬菌株生物產氫:代謝途徑與數學模式模擬研究,第29屆廢水研討會論文集。
    任維傑 (2006) 探討厭氧產氫純菌Clostridium在不同pH 下之反應動力機制,國立成功大學環境工程學系碩士論文。
    林佩瑩 (2007) 不同pH環境下厭氧產氫菌Clostridium競爭情形之研究,國立成功大學環境工程學系碩士論文。
    劉怡君 (2008) Clostridium tyrobutyricum在不同水力停留時間下之代謝表現與產氫行為之研究,國立成功大學環境工程學系碩士論文。
    莊崇柏、程海軒、楊雅斐、鄭幸雄、黃良銘 (2009) 利用生質酒精發酵殘渣產氫程序之研究,第二十一屆中華民國環境工程學會廢水處理技術研討會。
    莊崇柏 (2009) 利用生質酒精發酵殘渣產氫程序之研究,國立成功大學環境工程學系碩士論文。
    陳怡傑 (2009) 以厭氧流體化床進行廚餘過篩液及狼尾草之氫醱酵程序研究,國立成功大學環境工程學系碩士論文。
    林哲安 (2010) 以代謝方法評估Clostridium tyrobutyricum之生物產氫表現,國立成功大學環境工程學系碩士論文。
    程海軒、鍾曼倩、黃良銘 (2010) 利用乳酸與乙酸共基質厭氧發酵產氫之研究,第二十二屆中華民國環境工程學會廢水處理技術研討會。
    林哲安、吳兆瑋、劉怡君、黃良銘 (2010) 不同水力停留時間Clostridium tyrobutyricum之生物產氫表現,第二十二屆中華民國環境工程學會廢水處理技術研討會。
    Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990). "Basic local alignment search tool." Journal of molecular biology 215(3): 403-410.
    Anderson, G., B. Kasapgil and O. Ince (1994). "Microbiological study of two-stage anaerobic digestion during start-up." Water Research 28(11): 2383-2392.
    Andreesen, J. R., H. Bahl and G. Gottschalk (1989). Introduction to the physiology and biochemistry of the genus Clostridium Plenum Press, New York.
    Angenent, L. T., K. Karim, M. H. Al-Dahhan, B. A. Wrenn and R. Domiguez-Espinosa (2004). "Production of bioenergy and biochemicals from industrial and agricultural wastewater." Trends in Biotechnology 22(9): 477-485.
    Antonopoulou, G., H. N. Gavala, I. V. Skiadas, K. Angelopoulos and G. Lyberatos (2008). "Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass." Bioresource technology 99(1): 110-119.
    Antonopoulou, G., K. Stamatelatou, N. Venetsaneas, M. Kornaros and G. Lyberatos (2008). "Biohydrogen and methane production from cheese whey in a two-stage anaerobic process." Industrial & Engineering Chemistry Research 47(15): 5227-5233.
    APHA (1998). Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC.
    Ausubel, J. H. (2000). "Where is energy going." Industrial Physicist 6(1): 16-19.
    Axley, M., D. A. Grahame and T. C. Stadtman (1990). "Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component." Journal of Biological Chemistry 265(30): 18213-18218.
    Azbar, N. and R. E. Speece (2001). "Two-phase, two-stage, and single-stage anaerobic process comparison." Journal of environmental engineering 127: 240.
    Baghchehsaraee, B., G. Nakhla, D. Karamanev, A. Margaritis and G. Reid (2008). "The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures." International Journal of Hydrogen Energy 33(15): 4064-4073.
    Balows, A. (1992). The Prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer-Verlag, New York.
    Batstone, D. J., J. Keller, I. Angelidaki, S. Kalyuzhnyi, S. Pavlostathis, A. Rozzi, W. Sanders, H. Siegrist and V. Vavilin (2002). "The IWA Anaerobic Digestion Model No 1(ADM 1)." Water Science and Technology 45(10): 65-73.
    Bhat, J. V. and H. A. Barker (1947). "Clostridium lacto-acetophilum nov. spec. and the role of acetic acid in the butyric acid fermentation of lactate." Journal of bacteriology 54(3): 381-391.
    Bhattacharya, S. K., R. L. Madura, D. A. Walling and J. B. Farrell (1996). "Volatile solids reduction in two-phase and conventional anaerobic sludge digestion." Water Research 30(5): 1041-1048.
    Bilgen, S., K. Kaygusuz and A. Sari (2004). "Renewable energy for a clean and sustainable future." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 26(12): 1119-1129.
    Blonskaja, V., A. Menert and R. Vilu (2003). "Use of two-stage anaerobic treatment for distillery waste." Advances in Environmental Research 7(3): 671-678.
    Brentner, L. B., J. Peccia and J. B. Zimmerman (2010). "Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a Research Agenda." Environmental science & technology 44(7): 2243-2254.
    Brosseau, J. and J. Zajic (2007). "Hydrogen-gas production with Citrobacter intermedim and Clostridium pasteurianum." Journal of Chemical Technology and Biotechnology 32(3): 496-502.
    Bryant, M. P. and L. A. Burkey (1956). "The characteristics of lactate-fermenting sporeforming anaerobes from silage." Journal of bacteriology 71(1): 43-46.
    Cai, G., B. Jin, C. Saint and P. Monis (2010). "Metabolic flux analysis of hydrogen production network by Clostridium butyricum W5: Effect of pH and glucose concentrations." International Journal of Hydrogen Energy 35: 6687-6690.
    Chen, C. C., C. Y. Lin and J. S. Chang (2001). "Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate." Applied Microbiology and Biotechnology 57(1): 56-64.
    Chen, C. Y., M. H. Yang, K. L. Yeh, C. H. Liu and J. S. Chang (2008). "Biohydrogen production using sequential two-stage dark and photo fermentation processes." International Journal of Hydrogen Energy 33(18): 4755-4762.
    Chu, C. F., Y. Y. Li, K. Q. Xu, Y. Ebie, Y. Inamori and H. N. Kong (2008). "A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste." International Journal of Hydrogen Energy 33(18): 4739-4746.
    Clayton, M. (2008). "As global food costs rise, are biofuels to blame?" The Christian Science Monitor 28.
    Cohen, A., R. Zoetemeyer, A. Van Deursen and J. Van Andel (1979). "Anaerobic digestion of glucose with separated acid production and methane formation." Water Research 13(7): 571-580.
    Cooney, M., N. Maynard, C. Cannizzaro and J. Benemann (2007). "Two-phase anaerobic digestion for production of hydrogen-methane mixtures." Bioresource technology 98(14): 2641-2651.
    Das, D., T. Dutta, K. Nath, S. M. Kotay, A. K. Das and T. N. Veziroglu (2006). "Role of Fe-hydrogenase in biological hydrogen production." Current Science 90(12): 1627-1637.
    Das, D. and T. N. Veziroglu (2001). "Hydrogen production by biological processes: a survey of literature." International Journal of Hydrogen Energy 26(1): 13-28.
    Davila-Vazquez, G., S. Arriaga, F. Alatriste-Mondragon, A. de Leon-Rodriguez, L. Rosales-Colunga and E. Razo-Flores (2008). "Fermentative biohydrogen production: trends and perspectives." Reviews in Environmental Science and Biotechnology 7(1): 27-45.
    Demirbaş, A. (2006). "Global renewable energy resources." Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 28(8): 779-792.
    Demirel, B. and O. Yenigun (2002). "Two phase anaerobic digestion processes: a review." Journal of Chemical Technology & Biotechnology 77(7): 743-755.
    Dipaola, M. and V. Spada (2010). "Biohydrogen production: limits and prospects." Journal of commodity science, technology and quality 49(1): 23-32.
    Dunn, S. (2002). "Hydrogen futures: toward a sustainable energy system." International Journal of Hydrogen Energy 27(3): 235-264.
    Durre, P. (2005). Handbook on clostridia. CRC Press, Taylor & Francis, Boca Raton, Florida.
    Emert, G. H. and R. Katzen (1980). "Gulf's cellulose-to-ethanol process." Chemtech 10(10): 610-615.
    Fabiano, B. and P. Perego (2002). "Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes." International Journal of Hydrogen Energy 27(2): 149-156.
    Fang, H. and H. Liu (2002). "Effect of pH on hydrogen production from glucose by a mixed culture." Bioresource Technology 82(1): 87-93.
    Fridleifsson, I. B. (2001). "Geothermal energy for the benefit of the people." Renewable and Sustainable Energy Reviews 5(3): 299-312.
    Fukushima, Y., Y. J. Huang, J. W. Chen, H. C. Lin, L. M. Whang, H. Chu, Y. C. Lo and J. S. Chang (2011). "Material and energy balances of an integrated biological hydrogen production and purification system and their implications for its potential to reduce greenhouse gas emissions." Bioresource Technology.
    Ghosh, S., M. Henry, A. Sajjad, M. Mensinger and J. Arora (2000). "Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD)." Water Science and Technology: 101-110.
    Giordano, A., C. Cantu and A. Spagni (2011). "Monitoring the biochemical hydrogen and methane potential of the two-stage dark fermentative process." Bioresource technology 102: 4474-4479.
    Girbal, L., C. Croux, I. Vasconcelos and P. Soucaille (2006). "Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824." FEMS Microbiology Reviews 17(3): 287-297.
    Girbal, L. and P. Soucaille (1994). "Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool." Journal of Bacteriology 176(21): 6433-6438.
    Girbal, L. and P. Soucaille (1998). "Regulation of solvent production in Clostridium acetobutylicum." Trends in Biotechnology 16(1): 11-16.
    Goldemberg, J. and T. B. Johansson (2004). World Energy Assessment Overview: 2004 Update. United Nations Development Programme, New York.
    Gosner, A. S., F. Picardal, R. S. Tanner and H. L. Drake (2008). "Carbon metabolism of the moderately acid tolerant acetogen Clostridium drakei isolated from peat." FEMS microbiology letters 287(2): 236-242.
    Gottschalk, G. (1986). Bacterial metabolism. Springer, New York.
    Gujer, W. and A. J. B. Zehnder (1983). "Conversion processes in anaerobic digestion." Water Science & Technology 15(8-9): 127-167.
    Hafez, H. and G. Nakhla (2010). "Effect of organic loading on a novel hydrogen bioreactor." International Journal of Hydrogen Energy 35(1): 81-92.
    Han, S. K. and H. S. Shin (2004). "Performance of an innovative two-stage process converting food waste to hydrogen and methane." Journal of the Air & Waste Management Association 54(2): 242-249.
    Hashsham, S. A., A. S. Fernandez, S. L. Dollhopf, F. B. Dazzo, R. F. Hickey, J. M. Tiedje and C. S. Criddle (2000). "Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose." Applied and Environmental Microbiology 66(9): 4050-4057.
    Hawkes, F. R., H. Forsey, G. C. Premier, R. M. Dinsdale, D. L. Hawkes, A. J. Guwy, J. Maddy, S. Cherryman, J. Shine and D. Auty (2008). "Fermentative production of hydrogen from a wheat flour industry co-product." Bioresource Technology 99(11): 5020-5029.
    Hawkes, F. R., I. Hussy, G. Kyazze, R. Dinsdale and D. L. Hawkes (2007). "Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress." International Journal of Hydrogen Energy 32(2): 172-184.
    Hefner Iii, R. A. (2002). "The age of energy gases." International Journal of Hydrogen Energy 27(1): 1-9.
    Herbert, D., P. Philipps and R. Strange (1971). "Carbohydrate analysis." Methods in Enzymology 5: 265-277.
    Hippe, H., J. Andreesen and G. Gottschalk (1992). The prokaryotes. Springer Verlag, New York.
    Ho, N., Z. Chen, A. Brainard and M. Sedlak (1999). "Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol." Recent Progress in Bioconversion of Lignocellulosics: 163-192.
    Hussy, I., F. Hawkes, R. Dinsdale and D. Hawkes (2003). "Continuous fermentative hydrogen production from a wheat starch co product by mixed microflora." Biotechnology and Bioengineering 84(6): 619-626.
    Imkamp, F. and V. Muller (2007). Acetogenic Bacteria. Encyclopedia of Life Sciences, John Wiley & Sons, Inc.
    Jeffries, T. W. and Y. S. Jin (2000). "Ethanol and thermotolerance in the bioconversion of xylose by yeasts." Advances in Applied Microbiology 47: 221-268.
    Jo, J. H., D. S. Lee, D. Park and J. M. Park (2008). "Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process." Bioresource Technology 99(14): 6666-6672.
    Jo, J. H., D. S. Lee and J. M. Park (2008). "The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1." Bioresource technology 99(17): 8485-8491.
    Jones, D. T. and D. R. Woods (1986). "Acetone-butanol fermentation revisited." Microbiology and Molecular Biology Reviews 50(4): 484-524.
    Juang, C. P., L. M. Whang and H. H. Cheng (2011). "Evaluation of bioenergy recovery processes treating organic residues from ethanol fermentation process." Bioresource Technology 102(9): 5394-5399.
    Jungermann, K., M. Kern, V. Riebeling and R. Thauer (1976). Function and regulation of ferredoxin reduction with NADH in clostridia. Microbial production and utilization of gases. G. G and P. N, Gottingen: 85-95.
    Kataoka, N., A. Miya and K. Kiriyama (1997). "Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria." Water Science and Technology 36(6): 41-47.
    Khanal, S. K., W.-H. Chen, L. Li and S. Sung (2004). "Biological hydrogen production: effects of pH and intermediate products." International Journal of Hydrogen Energy 29(11): 1123-1131.
    Kim, S. H., S. K. Han and H.-S. Shin (2006). "Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter." Process Biochemistry 41(1): 199-207.
    Kobayashi, T., T. Hashinaga, E. Mikami and T. Suzuki (1989). "Methanogenic degradation of phenol and benzoate in acclimated sludges." Water Science & Technology 21(4-5): 55-65.
    Komatsu, T., K. Hanaki and T. Matsuo (1991). "Prevention of lipid inhibition in anaerobic processes by introducing a two-phase system." Water Science & Technology 23(7-9): 1189-1200.
    Kotay, S. M. and D. Das (2008). "Biohydrogen as a renewable energy resource--prospects and potentials." International Journal of Hydrogen Energy 33(1): 258-263.
    Kraemer, J. T. and D. M. Bagley (2005). "Continuous fermentative hydrogen production using a two-phase reactor system with recycle." Environmental Science and Technology 39(10): 3819-3825.
    Krishna, S. H., T. J. Reddy and G. V. Chowdary (2001). "Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast." Bioresource Technology 77(2): 193-196.
    Kyazze, G., N. Martinez Perez, R. Dinsdale, G. Premier, F. Hawkes, A. J. Guwy and D. Hawkes (2006). "Influence of substrate concentration on the stability and yield of continuous biohydrogen production." Biotechnology and Bioengineering 93(5): 971-979.
    Lalaurette, E., S. Thammannagowda, A. Mohagheghi, P. C. Maness and B. E. Logan (2009). "Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis." International Journal of Hydrogen Energy 34(15): 6201-6210.
    Lay, J. J. (2001). "Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose." Biotechnology and Bioengineering 74(4): 280-287.
    Lee, H., M. Salerno and B. Rittmann (2008). "Thermodynamic evaluation on H2 production in glucose fermentation." Environmental Science and Technology 42(7): 2401-2407.
    Lee, H. S., R. Krajmalinik-Brown, H. Zhang and B. E. Rittmann (2009). "An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH2: Microbial ecology evidence." Biotechnology and Bioengineering 104(4): 687-697.
    Lee, H. S., W. F. J. Vermaas and B. E. Rittmann (2010). "Biological hydrogen production: prospects and challenges." Trends in Biotechnology 28(5): 262-271.
    Lemon, B. J. and J. W. Peters (1999). "Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum." Biochemistry 38(40): 12969-12973.
    Li, C. and H. H. P. Fang (2007). "Fermentative hydrogen production from wastewater and solid wastes by mixed cultures." Critical Reviews in Environmental Science and Technology 37(1): 1-39.
    Li, S. L., L. M. Whang, Y. C. Chao, Y. H. Wang, Y. F. Wang, C. J. Hsiao, I. C. Tseng, M. D. Bai and S. S. Cheng (2010). "Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose-peptone and starch-peptone." International Journal of Hydrogen Energy 35(1): 61-70.
    Lin, C. Y. and C. H. Cheng (2006). "Fermentative hydrogen production from xylose using anaerobic mixed microflora." International Journal of Hydrogen Energy 31(7): 832-840.
    Lin, C. Y., C. C. Wu and C. H. Hung (2008). "Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures." International Journal of Hydrogen Energy 33(1): 43-50.
    Lin, P. Y., L. M. Whang, Y. R. Wu, W. J. Ren, C. J. Hsiao, S. L. Li and J. S. Chang (2007). "Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation." International Journal of Hydrogen Energy 32(12): 1728-1735.
    Lin, Y. and S. Tanaka (2006). "Ethanol fermentation from biomass resources: current state and prospects." Applied Microbiology and Biotechnology 69(6): 627-642.
    Liu, D., D. Liu, R. J. Zeng and I. Angelidaki (2006). "Hydrogen and methane production from household solid waste in the two-stage fermentation process." Water Research 40(11): 2230-2236.
    Liu, G. Z. and J. Q. Shen (2004). "Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria." Journal of Bioscience and Bioengineering 98(4): 251-256.
    Liu, I. C., L. M. Whang, W. J. Ren and P. Y. Lin (2010). "The effect of pH on the production of biohydrogen by Clostridia: Thermodynamic and metabolic considerations." International Journal of Hydrogen Energy 36(1): 439-449.
    Liu, X., Y. Zhu and S.-T. Yang (2006). "Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants." Enzyme and Microbial Technology 38(3-4): 521-528.
    Logan, B. E., D. Call, S. Cheng, H. V. M. Hamelers, T. H. J. A. Sleutels, A. W. Jeremiasse and R. A. Rozendal (2008). "Microbial electrolysis cells for high yield hydrogen gas production from organic matter." Environmental Science and Technology 42(23): 8630-8640.
    MacDonald, T., G. Yowell and M. McCormack (2001). US ethanol industry production capacity outlook. . California Energy Commission.
    Matsumoto, M. and Y. Nishimura (2007). "Hydrogen production by fermentation using acetic acid and lactic acid." Journal of Bioscience and Bioengineering 103(3): 236-241.
    Michel-Savin, D., R. Marchal and J. Vandecasteele (1990). "Butyric fermentation: metabolic behaviour and production performance of Clostridium tyrobutyricum in a continuous culture with cell recycle." Applied Microbiology and Biotechnology 34(2): 172-177.
    Minton, N. P. and D. J. Clarke (1989). Biotechnology Handbooks:Clostridia. Springer, New York and London.
    Mishra, J., S. Khurana, N. Kumar, A. K. Ghosh and D. Das (2004). "Molecular cloning, characterization, and overexpression of a novel [Fe]-hydrogenase isolated from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08." Biochemical and Biophysical Research Communications 324(2): 679-685.
    Momirlana, M. and T. N. Veziroglu (2005). "The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet." International Journal of Hydrogen Energy 30(7): 795-802.
    Ntaikou, I., G. Antonopoulou and G. Lyberatos (2010). "Biohydrogen production from biomass and wastes via dark fermentation: A review." Waste and Biomass Valorization 1(1): 21-39.
    Oh, S.-E., S. V. Ginkel and B. E. Logan (2003). "The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production." Environmental Science and Technology 37(22): 5186-5190.
    Ohnishi, A., Y. Bando, N. Fujimoto and M. Suzuki (2010). "Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora." International Journal of Hydrogen Energy 35: 8544-8553.
    Owen, W., D. Stuckey, J. Healy Jr, L. Young and P. McCarty (1979). "Bioassay for monitoring biochemical methane potential and anaerobic toxicity." Water Research 13(6): 485-492.
    Pohland, F. and S. Ghosh (1971). "Developments in anaerobic stabilization of organic wastes--the two-phase concept." Environmental letters 1(4): 255.
    Rathore, N. and N. Panwar (2007). Renewable energy sources for sustainable development. New India Publishing Agency, New Delhi.
    Reith, J., R. Wijffels and H. Barten (2003). Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production. Novem, Utrecht.
    Rittmann, B. (2008). "Opportunities for renewable bioenergy using microorganisms." Biotechnology and Bioengineering 100(2): 203-212.
    Rittmann, B. E. and P. L. McCarty (2001). Environmental Biotechnology: Principles and Applications. McGraw-Hill New York.
    Rosenthal, E. (2008). Studies call biofuels a greenhouse threat. New York Times. Feb. 8.
    Rosillo-Calle, F. and L. A. B. Cortez (1998). "Towards ProAlcool II--a review of the Brazilian bioethanol programme." Biomass and Bioenergy 14(2): 115-124.
    Schmidt, O., H. L. Drake and M. A. Horn (2010). "Hitherto unknown [Fe-Fe]-hydrogenase gene diversity in anaerobes and anoxic enrichments from a moderately acidic fen." Applied and Environmental Microbiology 76(6): 2027.
    Searchinger, T., R. Heimlich, R. A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes and T. H. Yu (2008). "Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change." Science 319(5867): 1238-1240.
    Shapouri, H., J. A. Duffield and M. Wang (2002). The energy balance of corn ethanol: an update. Agricultural Economics Reports, United states department of agriculture.
    Siriwongrungson, V., R. J. Zeng and I. Angelidaki (2007). "Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis." Water Research 41(18): 4204-4210.
    Stevens, C. and R. Verhé (2004). Renewable Bioresources: Scope and Modification for Non-Food Applications. John Wiley & Sons, Ltd., New York.
    Taguchi, F., N. Mizukami, T. Saito-Taki and K. Hasegawa (1995). "Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No. 2." Canadian Journal of Microbiology 41(6): 536-540.
    Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar (2011). "MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods." Molecular Biology and Evolution.
    Tanisho, S. and Y. Ishiwata (1994). "Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes." International Journal of Hydrogen Energy 19(10): 807-812.
    Tao, Y., Y. Chen, Y. Wu, Y. He and Z. Zhou (2007). "High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose." International Journal of Hydrogen Energy 32(2): 200-206.
    Thauer, R., K. Jungermann and K. Decker (1977). "Energy conservation in chemotrophic anaerobic bacteria." Microbiology and Molecular Biology Reviews 41(1): 100-180.
    Ueno, Y., H. Fukui and M. Goto (2007). "Operation of a two-stage fermentation process producing hydrogen and methane from organic waste." Environmental Science & Technology 41(4): 1413-1419.
    Ueno, Y., M. Tatara, H. Fukui, T. Makiuchi, M. Goto and K. Sode (2007). "Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process." Bioresource Technology 98(9): 1861-1865.
    UNDP (2000). World energy assessment 2000 – energy and the challenge of sustainability. UNDP, New York.
    van Andel, J. G., G. R. Zoutberg, P. M. Crabbendam and A. M. Breure (1985). "Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture." Applied Microbiology and Biotechnology 23(1): 21-26.
    Van Ginkel, S. and B. Logan (2005). "Inhibition of Biohydrogen Production by Undissociated Acetic and Butyric Acids." Environmental Science and Technology 39(23): 9351-9356.
    Van Ginkel, S. W., S. Sung and J. J. Lay (2001). "Biohydrogen production as a function of pH and substrate concentration." Environmental Science and Technology 35(24): 4726-4730.
    Vasconcelos, I., L. Girbal and P. Soucaille (1994). "Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol." Journal of Bacteriology 176(5): 1443-1450.
    Venkata Mohan, S., G. Mohanakrishna and P. Sarma (2008). "Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment." International Journal of Hydrogen Energy 33(9): 2156-2166.
    Wang, A., D. Sun, G. Cao, H. Wang, N. Ren, W. M. Wu and B. E. Logan (2010). "Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell." Bioresource technology.
    Whang, L. M., C. A. Lin, I. C. Liu, C. W. Wu and H. H. Cheng (2011). "Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition." Bioresource Technology.
    Wu, Z. and S. T. Yang (2003). "Extractive fermentation for butyric acid production from glucose by Clostridium tyrobutyricum." Biotechnology and bioengineering 82(1): 93-102.
    Wyman, C. E. (1994). "Ethanol from lignocellulosic biomass: technology, economics, and opportunities." Bioresource Technology 50(1): 3-15.
    Yokoi, H., T. Ohkawara, J. Hirose, S. Hayashi and Y. Takasaki (1995). "Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39." Journal of Fermentation and Bioengineering 80(6): 571-574.
    Yoshida, A., T. Nishimura, H. Kawaguchi, M. Inui and H. Yukawa (2006). "Enhanced hydrogen production from glucose using ldh-and frd-inactivated Escherichia coli strains." Applied Microbiology and Biotechnology 73(1): 67-72.
    Zhang, T. C. and T. Noike (1991). "Comparison of one-phase and two-phase anaerobic digestion processes in characteristics of substrate degradation and bacterial population levels." Water Science and Technology 23(7-9): 1157-1166.
    Zhang, T. C. and T. Noike (1991). "Comparison of one-phase and two-phase anaerobic digestion processes in characteristics of substrate degradation and bacterial population levels." Water Science & Technology 23(7-9): 1157-1166.
    Zheng, X.-J. and H.-Q. Yu (2005). "Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures." Journal of Environmental Management 74(1): 65-70.
    Zhu, H., A. Stadnyk, M. Beland and P. Seto (2008). "Co-production of hydrogen and methane from potato waste using a two-stage anaerobic digestion process." Bioresource Technology 99(11): 5078-5084.
    Zhu, Y., Z. Wu and S. T. Yang (2002). "Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor." Process Biochemistry 38(5): 657-666.
    Zhu, Y. and S. T. Yang (2004). "Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum." Journal of Biotechnology 110(2): 143-157.
    Zwietering, M., I. Jongenburger, F. Rombouts and K. Van't Riet (1990). "Modeling of the bacterial growth curve." Applied and Environmental Microbiology 56(6): 1875-1881.

    下載圖示 校內:2012-08-17公開
    校外:2012-08-17公開
    QR CODE