| 研究生: |
湯祥雯 Tang, Hsiang-Wen |
|---|---|
| 論文名稱: |
新型線性超音波馬達之設計與分析 Design and Analysis of a Novel Linear Ultrasonic Motor |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 行波 、線型超音波馬達 、相位配合 |
| 外文關鍵詞: | Traveling Wave, Linear Ultrasonic Motor, Phase Match |
| 相關次數: | 點閱:63 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為利用主動相位配合(Active Phase Match)之概念,設計新型線型行波超音波馬達之定子結構及分析其驅動機制,用以改善傳統被動吸振型式用以產生行波之缺點。本研究針對樑(Beam)分別提出兩種可產生行波之方法;第一種方法為藉由樑側向振動理論配合行波方程式推論得知;第二種方法則輔以ANSYS軟體分析,探討當行波行進於半無限長(Semi-infinite)之樑上,樑之阻尼效應以及位置差異對質點側向位移之振幅與相位差造成之影響。
本論文並基於上述提出於樑上產生行波之方法,分別設計兩種不同形式之壓電致動硬體架構;第一種創新、結構簡單之架構,為藉由兩組四片壓電片直接黏貼於樑上致動;第二種架構則為藉由藍杰文振動子(Langevin Vibrator)致動,產生具有振幅放大之效果,最後透過ANSYS軟體模擬與量測實驗用以驗證本研究所提出設計概念之可行性。結構表面質點之橢圓形運動軌跡以及駐波比則為本文探討行波性能之主要指標。
This thesis is primarily concerned with the novel stator design of a traveling wave type linear ultrasonic motor and the analysis of its driving methods. Continuous traveling wave can be achieved on the stator by adopting the active phase match technique instead of the passive vibration absorption methods. In the study, the Bernoulli-Euler beam is discussed, and two driving mechanisms to generate traveling wave are presented. One method uses the beam’s lateral vibration theory associated with the traveling wave representation. The other method, assisted by finite element analysis, discusses the influence on the amplitude and phase differences of the lateral displacement of the surface particles due to the beam’s damping effect and the diverse locations between the particles when a traveling wave propagates on a semi-infinite beam.
Furthermore, this thesis proposes two different actuating techniques with piezoelectric materials. One is a novel compact structure combining four piezoelectric patches and an aluminum beam, and the other is the actuation with Langevin vibrators. The finite element software ANSYS is used to analyze the feasibility of the proposed stator, which is then verified by experimental studies. The results demonstrate the feasibility of the proposed designs.
[1] N. W. Hagood and A. J. McFarland, “Modeling of a Piezoelectric Rotary Ultrasonic Motor,” IEEE Transaction on Sonics and Ultrasonics, Ferroelectrics, and Frequency Control, Vol.42, pp. 210-224, 1995.
[2] T. Senjyu, K. Uezato, and H. Miyazoto, “Adjustable Speed Control of Ultrasonic Motors by Adaptive Control,” IEEE Transactions on Power Electronics, Vol. 10, pp. 532-538, 1995.
[3] Y. Tomikawa, T. Takano, and H. Umeda, “Thin Rotary and Linear Ultrasonic Motors Using a Double-Mode Piezoelectric Vibrator of the First Longitudinal and Second Bending Modes,” Japanese Journal of Applied Physics, Vol. 31, pp. 3073-3076, 1992.
[4] S. Ueha and Y. Tomikawa, Ultrasonic Motors: Theory and Applications. New York: Clarendon Press, 1992.
[5] J. Toyoda and K. Murano, “A Small-size Linear Motor,” Japanese Journal of Applied Physics, Vol. 30, pp. 2274-2276, 1991.
[6] K. Uchino, “Piezoelectric Ultrasonic Motors: Overview,” Smart Mater. Struct., Vol. 7, pp. 273-285, 1998.
[7] A. Kawamura and N. Takeda, “Linear Ultrasonic Piezoelectric Actuator,” IEEE Transactions on Industry Applications, Vol. 27, pp. 23-26, 1991.
[8] Y. Roh, S. Lee, and W. Han, “Design and Fabrication of a New Traveling Wave-Type Ultrasonic Motor,” Sensors and Actuators A., Vol.94, pp. 205-210, 2001.
[9] T. Sashida and T. Kenjo, An Introduction to Ultrasonic Motors. New York: Clarendon Press, 1993.
[10] Y, Tomikawa, M. Yaginuma, S. Hirose, and T. Takano, “An Equivalent Circuit Expression of an Ultrasonic Motor and Measurement of its Element-In the Case of L1-B8 Multimode Rectangular Thin-form Motor-,” Japanese Journal of Applied Physics, Vol. 30, pp. 2398-2401, 1991.
[11] M. Aoyagr and Y. Tomikawa, “Simplified Equivalent Circuit of Ultrasonic Motor and its Application to Estimation of Motor Characteristics,” Japanese Journal of Applied Physics, Vol. 34, pp. 2752-2755, 1995.
[12] M. Kurosawa and S. Ueha, “Efficiency of Ultrasonic Motor Using Traveling Wave,” J. Acoust. Soc. Jpn., Vol.44-1, pp. 40, 1988.
[13] T. Yamabuchi and Y. Kagawa, “Numerical Simulation of a Piezoelectric Ultrasonic Motor and its Characteristics,” Simulation, Vol.8-3, pp. 69, 1989.
[14] T. Maeno, T. Tsukimoto, and A. Miyake, “Finite-Element Analysis of the Rotor/Stator Contact in a Ring-type Ultrasonic Motor,” IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, Vol.39, pp. 668-674, 1992.
[15] T. Bein, E. J. Breitbach, and K. Uchino, ”A Linear Ultrasonic Motor Using the First Longitudinal and the Fourth Bending Mode,” Smart. Mater. Struct., Vol. 6, pp. 619-627, 1997.
[16] W. Seemann, “A Linear Ultrasonic Traveling Wave Motor of the Ring Type,” Smart. Mater. Struct., Vol. 5, pp. 361-368, 1996.
[17] 王柏村,振動學,全華科技圖書,台北市,2002年。
[18] L. Meirovitch, Analytical Methods in Vibrations. New York: Macmillan, 1967.
[19] M. Kurosawa and S. Ueha, “High Speed Ultrasonic Linear Motor with High Transmission Efficiency,” Ultrasonics, Vol. 27, pp. 39-44, 1989.
[20] S. Y. Lee, W. R. Wang, and Y. F. Chen, “A General Approach on the Mechanical Analysis of Nonuniform Beams with Nonhomogeneous Elastic Boundary Conditions,” Transactions of the ASME, Vol. 120, pp. 164-169, 1998.