| 研究生: |
陳俊益 Chen, Chun-I |
|---|---|
| 論文名稱: |
流體薄膜沿等速旋轉圓柱內外表面流下之非線性穩定性分析 Nonlinear Stability Analysis of Film Flowing Down on the Inner and Outer Surfaces of a Rotating Cylinder |
| 指導教授: |
楊玉姿
Yang, Yue-Tze 陳朝光 chen, Cha’o-Kuang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 245 |
| 中文關鍵詞: | Ginzburg-Landau 方程式 、多重尺度法 、正模分析法 、穩定性分析 、薄膜流 、圓柱旋轉 |
| 外文關鍵詞: | Ginzburg-Landau equation, normal mode analysis, method of multiple scales, thin film flow, stability analysis, rotating cylinder |
| 相關次數: | 點閱:130 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用線性與非線性理論,探討當流體薄膜沿直立旋轉圓柱之外、內表面流下時,流動系統穩定性之現象。當以線性模式探討流動狀況時,發現不足以顯現出整個流動特性,因此,推導出廣義非線性運動模式以代表整個物理系統。本文利用長波微擾法對於所得到之自由面運動方程式進行之研究,以探討流體薄膜於穩態平衡時,受微小擾動後所表現之穩定性,首先為利用正模分析法來探討液膜之線性穩定性,進而得出線性中立穩定曲線、線性振幅增長率及線性波速。其次應用時間和空間之多重尺度法研究液膜的非線性穩定性,並得知Ginzburg-Landau 型方程式為解存在之必要條件,利用此方程式可研究液膜表面波之非線性行為,並定出無條件穩定、亞臨界不穩定、超臨界穩定及超臨界爆炸解研究之內容,主要探討代表旋轉效應之旋轉數(Rotation number)及圓柱半徑大小對流動系統穩定性的影響,選擇之流體為牛頓流體、黏彈流體及微極流體,最後探討具有相變化之問題,為簡化分析之參數,研究非牛頓流體時僅選擇代表性之流體,其中黏彈性流體之黏彈性參數為k =0.05、微極流體之微極參數為K =1。
研究結果發現,旋轉數及圓柱半徑大小對於四種流動系統之穩定性具有相同之影響,現將結論歸納如下:
(一) 圓柱半徑大小對流動系統穩定性的影響
半徑越大流動系統越穩定,反之流動系統不穩定。造成此種現象的原因為,圓柱表面波之波峰半徑較波谷半徑大,且表面張力將會於較小曲率半徑處產生較大之毛細壓力(capillary pressure),因此毛細力會將流體從波谷推向波峰,導致波幅增加,故較小半徑之圓柱將增加對流之流動和表面波之波動,即干擾後之振幅受到曲率之影響而較易增長。隨半徑值減小,流場強度愈大,系統更加不穩定。
(二) 液膜沿相同半徑圓柱內、外表面流下之穩定性分析
當研究液膜沿相同半徑圓柱之內、外表面流下時,發現由於所推導出之管外流自由面運動方程式,其特徵長度為圓柱半徑加上液膜厚度(R+h),較管內流之圓柱半徑減掉液膜厚度(R-h)為大,因此根據結論(一)可知,於相同半徑之條件下,管外流較管內流穩定。
(三) 液膜沿旋轉圓柱外表面流下之穩定性分析
當討論相同圓柱半徑,但是不同旋轉速度下之情形時,發現旋轉會使得具較大半徑之波峰比較小半徑之波谷承受更大之離心力,因此導致流動系統不穩定,此不穩定之現象隨旋轉速度增加更加明顯。而當討論相同旋轉速度,但是不同圓柱半徑時,必須同時考慮代表穩定因素之圓柱半徑與不穩定因素之離心力間的交互影響,於低雷諾數區域內,圓柱半徑對於穩定性有較高之貢獻度,隨著雷諾數增加,離心力之影響漸漸大過圓柱半徑,因此原先具有較高穩定性之大半徑圓柱,會因為離心力之作用導致穩定性大大降低。
(四)液膜沿旋轉圓柱內表面流下之穩定性分析
當討論相同圓柱半徑,但是不同旋轉速度下之情形時,發現旋轉所產生之離心力,使得流體具有一個向外並貼附在圓柱內表面上的力量,導致流動系統穩定,此穩定之現象隨旋轉速度增加更加明顯。因此圓柱半徑及旋轉均扮演穩定流場之角色。
The paper presents both the linear and nonlinear stability theories for characterization of film flows down on the outer and inner surface of a rotating cylinder. After showing the insufficiency of the linear model in charactering certain flow behaviors, a generalized nonlinear kinematic model is then derived to represent the physical system. The long-wave perturbation method is employed to explore the stability of the steady state flow system, which is subject to minute disturbance, by studying the derived evolution equations for
interfacial waves. In the first step, the normal mode method is used to characterize the linear behaviors. The threshold conditions, the linear growth rate of the amplitudes and the linear wave speeds are obtained subsequently as the by-products of linear solution. In the second step, an elaborated nonlinear film flow model is solved by using the method of multiple scales to characterize flow behaviors. It is shown that the necessary condition for the existence of such a solution us governed by the Ginzburg-Landau equation. The various states of sub-critical stability, sub-critical instability, supercritical stability, and supercritical explosion are obtained from the nonlinear analysis.
The purpose of this study is to discuss the effect of rotating parameter, Rotation number, and size of cylinder on the stability of the flow system. The
chosen fluids are the Newtonian fluid, the viscoelastic fluid and the micropolar fluid. And at last, the problem of phase transformation is taken into consideration. For simplifying the problem, the representative fluid is selected. i.e. the viscoelastic fluid with the viscoelastic parameter k=0.05, the micropolar fluid with micropolar parameter K=1.
The results of this study are found that the effect of Rotation number and the size of cylinder on the four different flow systems are the same. And the
conclusions are summarized and drawn as following:
(1) The effect of cylinder size on the stability:
The larger the cylinder size and the more the stability is. Therefore, the curvature has a destabilizing effect. This destabilizing effect occurs because the radius of the trough of wave have a smaller value than that at the crest of waves, and the surface tension will produce large capillary pressure at the smaller radius of curvature. This induces the capillary pressure force tending to move
the fluid trough to crest, thus increasing the amplitude of wave.
(2) The stability of film flows down on the inner and outer surface of cylinder with the same radius:
When studying the film falling down on the outer and inner surface of the cylinder with the same radius, the characteristic length of external flow, R+h, is
larger than the internal flow, R-h. According to the conclusion (1), the external flow is more stable than the internal flow under the condition of the same cylinder radius.
(3) The stability of film flows down on the outer surface of rotating cylinder:
When discussing the same cylinder size but subject to different rotating speed, the induced centrifugal force is found. Its direction is toward the positive
radius axis and serving as the destabilizing factor. This is because the crests of wave feel a larger centrifugal force than the troughs, which have smaller radius. The flow system will become less stable as the rotation speed increased. When studying the same rotating speed but subject to different cylinder size, the interaction between the stabilizing factor, radius, and the destabilizing factor, rotation, should be considered. In the low Reynolds number region, the contribution of radius to the stability is higher. As the Reynolds number is gradually increased, the centrifugal force will destroy the stability drastically.
(4) The stability of film flows down on the inner surface of rotating cylinder:
When discussing the same cylinder size but subject to different rotating speed, the induced centrifugal force is found to let the fluid sticking to the wall
of cylinder. Therefore, the centrifugal force serves as the stabilizing factor. The faster the rotation speed and the more the stability is. In this case, the cylinder size and the rotation all play important role in stabilizing the flow system.
Agrawal, S., “Spatially growing disturbances in a film,” Ph.D. thesis, PART 1, Clarkson College of Technology, 1972.
Ahmadi, G., “Stability of a micropolar fluid layer heated from below,” Int. J. of Eng. Sci., Vol. 14, pp. 81-89 (1976).
Alekseenko, S. V., Nakorgakov, V. E. and Pokusaev, B. G., “Wave formation on a vertical falling liquid film,” AIChE J., Vol. 31, pp. 1446-1460 (1985).
Anshus, B. E., Finite amplitude wave flow of a thin film on a vertical wall, Ph. D. thesis, Univ. of California, Berkely (1965).
Anshus, B. E., “On the asymptotic solution to the falling film stability problem,”Ind. Eng. Chem. Fundam., Vol. 11, pp. 502-508 (1972).
Arata, Y., Maruo, H., Miyamoto, I. and Takeuchi, S., “Dynamic behavior in laser gas cutting of mild steel,” Trans. JWRI, Vol. 8, pp. 15-26 (1979).
Atherton, R. W. and Homsy, G. M.,”Use of symbolic omputation to generate evolution equations and asymptotic solution to elliptic equations,” J. Comput.
Atherton, R. W. and Homsy, G. M., “On the derivation of evolutin equations for interfacial waves,” Chem. Eng. Comm., Vol. 2, pp. 57-77 (1976).
Bankoff, S. G., “Stability of liquid flow down a heated inclined plane,” Int. J. Heat and Mass Transfer, Vol. 14, pp. 377-385 (1971).
Beard, D. W. and Walters, K., “Elastico-viscous boundary-layer flow Two-dimensional flow near a stagnation point,” Proc. Camb. Phil. Soc., Vol. 60,
212
Benjamin, T. B., “Wave formation in laminar flow down an inclined plane,” J. Fluid Mech., Vol. 2, pp. 554-574 (1957).
Benney, D. J., “Long waves on liquid film,” J. of Mathematics and Physics, Vol. 45, pp. 150-155 (1966).
Blenerhassett, P. J., “On the generation of waves by wind,” Philos. Trans. Roy. Soc. London Ser. A, Vol. 1441, pp. 43-48 (1980).
Chandrasekhar, S., Hydrodynamic and hydromagnetic stability, Oxford University Press, Oxford (1961).
Chang, H. C., “Traveling waves on fluid interfaces: Normal form analysis of the Kuramoto-Sivashinky equation,” Phys. Fluids, Vol. 29, pp. 3142-3147 (1986).
Chang, H. C., “Evolution of nonlinear waves on vertically falling film- a normal form analysis,” Chem. Eng. Sci., Vol. 42, pp. 515-533 (1987).
Chen, L. H. and Chang, H. C., “Nonlinear waves on liquid film surfaces Bifurcation of the long-wave equation,” Chem. Eng. Sci., Vol. 41, pp.
2477-2486 (1986).
Cheng, P. J., Lai, H. Y. and Chen, C. K., “Stability analysis of thin viscoelastic
liquid film flowing down on a vertical wall,” J. Phys. D: Appl. Phys., Vol. 33, No. 14, pp. 1674-1682 (2000).
Cheng, P. J., Chen, C. K. and Lai, H. Y., “Nonlinear stability analysis of thin viscoelastic film flow traveling down along a vertical cylinder,” Nonlinear dynamics, Vol. 24, 305-332 (2001a).
Cheng, P. J., Chen, C. K. and Lai, H. Y., “Nonlinear stability analysis of the thin
micropolar liquid film flowing down on a vertical cylinder,” ASME J. Fluids Eng., Vol. 123, pp. 411-421 (2001b).
Datta, A. B. and Sastry, V. U. K., “Thermal instability of a horizontal layer of
213
micropolar fluid heated from below,” Int. J. of Eng. Sci., Vol. 14, pp. 631-637 (1976).
D?valos-Orozco, L. A. and Ruiz-Chavarria, G., “Hydrodynamic instability of a fluid layer flowing down a rotating cylinder,” Phys. Fluids A, Vol. 5 (10), pp. 2390-2404 (1993).
Diprima, R. C. and Stuart, J. T., “The Eckhaus and Benjamin-Feir resonance mechanisms,” Proc. Roy. Soc. A, Vol. 362, pp. 27-41 (1978).
Drazin, P. G. and Reid, W. H., “Hydrodynamic Stability,” Cambridge University Press, Cambridge (1984).
Dressler, R. F., “Mathematical solution of the problem of roll-waves in inclined open channels,” Comm. Pure Appl. Math., Vol. 2, pp. 149-162 (1949)
Ehrlich,R. and Slattery, J. C., “Approximate solutions for two-phase flow problem,” Ind. Eng. Chem. Fundam., Vol. 10, pp. 466-473 (1971)
Eringen, A. C. “Simple microfluids,” Int. J. of Eng. Sci., Vol. 2, pp. 205-217 (1964).
Eringen, A. C., “Theory of micropolar fluids,” J. of Mathematics and Mechanics, Vol. 16, pp. 1-18 (1967).
Esmail, M. N., Hummel, R. L. and Smith, J. W., “Instability of two phase flow in a vertical cylinder,” Phys. Fluids, Vol. 18, pp. 508-516 (1975).
Feind, K., “Stromungsuntersuchgen bei Gegenstrom von Riselfilmen und Gas in lotrechten Rohren,” VDI (Ver. Deut. Ingr.) Rorschungsheft pp. 481-502 (1960).
Franchi, F. and Straughan, B., “Nonlinear stability for thermal convection in a micropolar fluid with temperature dependent viscosity,” Int. J. of Eng. Sci., Vol. 30, pp. 1349-1360 (1992).
Fulford, G. D., “The flow of liquids in the films,” Advan. Chem.. Eng., Vol. 5, pp. 151-179 (1964)
Gallez, D. and Coakely, W. T., “Interfacial instability at cell membrances,” Progr. Biobhys. Mol. Biol., Vol. 48, pp. 155-160 (1986).
Ginzburg, V. L. and Landau, L. D., “Theory of superconductivity,” J. Exptl. Theoret. Phys. (USSR), Vol. 20, pp. 1064-1082 (1950).
Gjevik, B., “Occurrence of finite amplitude surface wave of falling liquids films,”Phys. Fluids, Vol. 13, pp. 1918-1923 (1970).
Goren, S. L., “The instability of an annular thread of fluid,” J. Fluid Mech., Vol. 12, pp. 309-319 (1962).
Gupta, A. S., “Stability of a visco-elastic liquid film flowing down an inclined plane,” J. Fluid Mech., Vol. 28, pp. 17-28 (1967).
Gupta, A. S. and Lajpat, R., “Note on the stability of a visco-elastic liquid film flowing down an inclined plane,” J. Fluid Mech., Vol. 33, pp. 87-91 (1968).
Hasegawa, E. and Nakaya, C., “Stability of a liquid layer down the surface of a vertical cylinder,” J. of the Physical Society of Japan, Vol. 29, No. 6, pp. 1634-1639 (1970).
Hickox, C. E., “Instability due to viscosity and density stratification in axisymmetric pipe flow,” Phys. Fluids, Vol. 14, pp. 251-262 (1971).
Hung, C. I., Chen, C. K. and Tsai, J. S., “Weakly nonlinear stability analysis of condensate film flow down a vertical cylinder,” Int. J. Heat and Mass Transfer, Vol. 39, pp. 2821-2829 (1996a).
Hung, C. I., Tsai, J. S. and Chen, C. K., “Nonlinear Stability of the thin micropolar
liquid film flowing down on a vertical plate,” ASME J. of Fluids Eng.g, Vol. 118, pp. 498-505 (1996b).
Hwang, C. C. and Chang, S. H., “Rupture theory of thin power-law liquid film,” J. Appl. Phys. Vol. 74, pp. 2965-2967 (1993).
Hwang, C. C. and Weng, C. I., “Finite-amplitude stability analysis of liquid films down a vertical wall with and without interfacial phase change,” Int. J. of Multiphase flow, Vol. 13, pp. 803-814 (1987).
Jackson, M. L., “Liquid films in viscous flow,” AICHE J., Vol. 1, pp. 231-240 (1955).
Kapitza, P. L., “Wave flow of thin viscous liquid films,” Zh. Expeer. Teor. Fiz., Vol.18, pp. 3-28 (1948).
Kocamustafaogullare, G., “Two-fluid modeling in analyzing the interfacial stability of liquid film,” Int. J. Multiphase Flow, Vol. 11, pp. 63-89 (1985).
Krantz, W. B. and Goren, S. L., “Finite-amplitude, long waves on liquid films flowing down a plane,” Ind. Eng. Chem. Fundam., Vol. 9, pp. 107-113 (1972).
Krantz, W. B. and Zallars, R. L., “The linear hydrodynamic stability of film flow down a vertical cylinder,” AIChE J., Vol. 22, pp. 930-934 (1976).
Krishna, M. V. G. and Lin, S. P., “Nonlinear stability of a viscous film with respect to three-dimensional side-band disturbances,” Phys. Fluids,, Vol. 20, pp.1039-1044 (1977).
Kuramoto, Y., “Diffusion induced chaos in reaction systems,” Progr. Theoret. Phys. Suppl., Vol. 64, pp. 346 (1978).
Kuramoto, Y. and Koga, S., “Anomalous
period-doubling bi-fucations leading to
chemical turbulence,” Phys. Letter A, Vol. 92, pp. 1-6(1982).
Landau, L. D., “On the problem of turbulence,” C.R. Acad. Sci., U.R.S.S., Vol. 44,
pp. 311-314 (1944).
Lin, C. C., The theory of hydrodynamic stability, Cambridge University Press, Cambridge (1955).
216
Lin, S. P., “Instability of a liquid film flowing down an inclined plane,” Phys. Fluids, Vol. 10, pp. 308-313 (1967).
Lin, S. P., “Finite amplitude side-band stability of a viscous film,” J. Fluid Mech., Vol. 63, pp. 417-429 (1974).
Lin, S. P. and Krishna, M. V. G., “Stability of liquid film with respect to initially
finite three-dimensional disturbances,” Phys. Fluids, Vol. 20, pp. 2005-2011
(1977).
Lin, S. P. and Liu, W. C., “Instability of film coating of wires and tubes,” AIChE J., Vol. 21, pp. 775-782 (1975).
Lin, S. P. and Suryadevara, O., “Solitary, periodic and chaotic waves in thin films,” Trans. of the 2nd Army Conf. of Appl. Math. and Comp., pp. 483-499
(1985).
Liu, C. Y., “On turbulent flow of micropolar fluids,” Int. J. of Eng. Sci., Vol. 8, pp.
457-466 (1970).
Liu, C. Y., “Initiation of instability in micropolar fluids,” Phys. Fluids, Vol. 14,
pp. 1808-1809 (1971).
Marschall, E. and Lee, C. Y., “Stability of condensate flow down a vertical wall,”
Int. J. Heat and Mass Transfer, Vol. 16, pp. 41-48 (1973).
Mei, C. C., “Nonlinear Gravity waves in a thin sheet of viscous fluid,” J. Math. Phys. Vol. 45, pp. 266-281 (1966).
Moffatt, H. K., “Behaviour of a viscous film on the outer surface of a rotating cylinder,” J. de M?chnique, Vol. 16, pp. 651-673 (1977).
Musslimani, Z. H., “Long-wave instability in optical parametric oscillators,” Physica A, Vol. 249, pp. 141-145 (1998).
Nakaya, C., “Equilibrium state of periodic waves on the fluid film down a vertical wall,” J. Phys. Soc. Japan, Vol. 36, pp. 921-926 (1974).
Nakaya, C., “Long waves on a thin fluid layer flowing down an inclined plane,”Phys. Fluids, Vol. 18, pp. 1407-1412 (1975).
Nayfeh, A. H., Perturbation method, Wiley, New York, Chapter 6, pp. 228-309
(1973).
Newell, A. C. and Whitehead, J. A., “Finite bandwidth, finite amplitude convection,” J. Fluid Mech., Vol. 38, pp. 279-303 (1969).
Payne, L. E. and Straughan, B., “Critical Rayleigh numbers for oscillatory and nonlinear convection in an isotropic thermalmicropolar fluid,” Int. J. of Eng. Sci., Vol. 27, pp. 827-836 (1989).
Pumir, A., Manneville, P. and Pomeau, Y., “On solitary waves running down on inclined plane,” J. Fluid Mech., Vol. 135, pp. 27-50 (1983).
Reynolds, O., “An experimental investigation of the circumstance which determine whether the motion of water shall be direct or sinuous, and of the law
of resistance in parallel channels,” Phil. Trans. Roy. Soc., Vol. 174, pp. 935-982
(1883).
Rosenau, P. and Oron, A., “Evolution and breaking of liquid film flowing on a vertical cylinder,” Phys. Fluids A, Vol. 1, pp. 1763-1766 (1989).
Rosensweig, R. E., Ferrohydrodynamics, Cambridge University Press, Cambridge (1985).
Roskes, G. J., “Three-dimensional long waves on a liquid film,” Phys. Fluids, Vol. 13, pp. 1440-1445 (1970).
Ruschak, K. J. and Scriven, L. E., “Rimming flow of liquid in a rotating horizontal cylinder,” J. Fluid Mech., Vol. 76, pp. 113-125 (1976).
Schuocker, D., “Dynamic phenomena in laser cutting and cut quality,” Appl. Phys. B, Vol. 40, pp. 9-14 (1986).
Segel, L. A., “Distant side-walls cause slow amplitude modulation of cellular convection,” J. Fluid Mech., Vol. 38, pp. 203-204 (1969).
Sharma, G. S., Lu, P. C. and Ostrach, S., “Flow stability in a vertical rotating tube with a core-gas flow,” Phys. Fluids, Vol. 14, pp. 2265-2277 (1971).
Sharma, A. and Ruckenstein, E., “Mechanism of tear film rupture and formation of dry spots on cornea,” J. Colloid Interface Sci., Vol. 106, pp. 12-25 (1985).
Shen, M. C., “Axisymmetric surface waves in viscous swirling flow,” Phys. Fluids, Vol. 19, pp. 487-489 (1976).
Shlang, T. and Sivashinsky, G. I., “Irregular flow of a liquid film down a vertical column,” J. Phys. (paris), Vol. 43, pp. 459-466 (1982).
Sivashinsky, G. I. and Michelson, D. M., “On irregular wavy flow of a liquid film down a vertical plane,” Prog. theor. Phys., Vol. 6, pp. 2112-2114 (1980).
Spinder, B., “Linear stability of liquid films with interfacial phase change,” Int. J. Heat and Mass Transfer, Vol. 25, pp. 161-173 (1982).
Straughan, B., The energy method, stability, and nonlinear convection, Springer-Verlag, New York (1992).
Stuart, J. T., “On the role of Reynolds stresses in stability theory,” J. Aero. Sci., Vol. 23, pp. 86-88 (1956).
Takamasa, T. and Kobayashi, K., “Measuring interfacial waves on film flowing down tube inner wall using laser focus displacement meter,” Int. J. Multiphase Flow, Vol. 26, pp. 1493-1507 (2000).
Tsai, J. S., Hung, C. I. and Chen, C. K., “Nonlinear hydromagnetic stability analysis of condensation film flow down a vertical wall,” Acta Mechanica, Vol. 118, pp. 197-212 (1996).
?nsal, M. and Thomas, W. C., “Linearized stability analysis of film condensation,” ASME. J. Heat Transfer, Vol. 100, pp. 629-634 (1978).
Vicanek, M., Simon, G., Urbassek, H. M. and Decker, I., “Hydrodynamical instability of melt flow in laser cutting,” J. Phys. D: Appl. Phys., Vol. 20, pp. 140-145 (1987).
Walters, K., “The solution of flow problems in the case of materials with memory,” J. Mec., Vol. 1, pp. 479-486 (1962).
Wehausen, J. V., and Laitone, E. V., “Surface waves,” Handbuch der Physik 9/3, Ed. S. Flugge, Springer-Verlag, Berlin, pp. 446-778 (1960).
Yih, C. S., “Stability of parallel laminar flow with a free surface,” Proceedings of
the second U.S. National Congress of Applied Mechanics, American Society of Mechanical Engineers, New York, pp. 623-628 (1954).
Yih, C. S., “Stability of liquid flow down an inclined plane,” Phys. Fluids, Vol. 6,
pp. 321-334 (1963).
黃吉川,薄膜流的非線性液動穩定分析,國立成功大學機械工程研究所博士論文(1987)。
蔡榮順,具磁場作用或懸浮微粒效應之薄膜流穩定性分析,國立成功大學機械工程研究所博士論文(1996)。
鄭友仁,直立圓柱面上薄膜凝結流之穩定性分析,國立成功大學機械工程研究所碩士論文(1980)
林振森,直立圓柱面上凝結薄膜流之線性穩定性分析,國立成功大學機械工程研究所碩士論文(1986)
鄭博仁,重力作用下之非牛頓流體薄膜流的非線性液動穩定性分析,國立成功大學機械工程研究所博士論文(2001)