簡易檢索 / 詳目顯示

研究生: 胡閔茜
Hu, Min-Chien
論文名稱: 以離子交換樹脂分離藍泥浸漬液中釩、鉬之研究
Separation of Vanadium and Molybdenum ions in Blue Sludge leachate by Ion Exchange Resin
指導教授: 申永輝
Shen, Yun-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 109
中文關鍵詞: 離子交換螯合型樹脂分離藍泥
外文關鍵詞: ion-exchange, chelate resin, Vanadium, Molybdenum, separation, blue sludge
相關次數: 點閱:138下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前國內每年約產生10,000 ~ 12,000公噸加氫脫硫廢觸媒。廢觸媒經資源化程序回收釩、鉬後之殘渣即為藍泥。進一步將藍泥資源化時,經酸培燒及浸漬後之溶液中仍含相當濃度的釩、鉬等金屬離子。因此本研究以藍泥浸漬液為處理對象,以離子交換樹脂法分離釩、鉬金屬離子。主要研究內容為利用批次方式進行吸附與脫附試驗,獲得樹脂對釩、鉬分離之參數,再藉由離子交換管柱試驗進行釩、鉬分離及純化試驗。
    批此實驗得知螯合型樹脂對釩、鉬皆有優異的吸附效果,並進行批次比較(簡稱為M、I樹脂)。由動力吸附實驗得知,鉬比釩需較長時間才可達吸附平衡,吸附動力行為較符合擬二階動力方程式。經Langmuir等溫吸附模式分析得知,樹脂M對釩飽和吸附量最大,約為38mg/g。樹脂M對釩、鉬的吸附效果皆比IRC748為佳。經Freundlich等溫吸附模式分析得知樹脂I與M對釩的吸附容量不受溶質平衡濃度影響,吸附鉬則皆受溶質平衡濃度影響。樹脂I與M吸附釩、鉬反應之活化能皆為正值,分別為36.92、6.16、38.02、0.75 KJ mole-1。以熱力學方程式可獲得I與M吸附釩、鉬反應之Gibbs自由能變化(△G0)、焓變(△H0)、熵變(△S0)。由脫附批次試驗可知,H2SO4與NaOH可脫附吸附於I與M樹脂之釩離子,NH4OH與NaOH可脫附鉬離子。
    以樹脂I進行管柱試驗,可知進料流速越慢吸附效果越好。藍泥浸漬液需在pH=2時,樹脂I對釩、鉬吸附效果最佳,不同金屬離子之吸附能力大小順序為鉬>釩>>鎳>鋁。管柱吸附約140B.V之進料後進行階段洗脫,可分別富集尖峰濃度約1200ppm、純度87.3%之釩溶液,與1800ppm、純度99.1%之鉬溶液,達到鉬與釩分離純化之效果。

    At present, the annual production of wasted hydrodesulfurization catalyst domestically is about 11,000 tonnes. The residues obtained by extracting V and Mo from wasted hydrodesulfurization catalyst is called the blue sludge. In order to further recover V, Mo and Ni, the blue sludge was subjected to acid-roasting and hot-water leaching process. This process yields an leachate rich in Ni and Al and also containing some V and Mol ions. The subject of this research is the leachate from blue sludge. In this study we investigate the recovery and separation of V and Mo ions in leachate by ion exchange process.
    Batch experimental results indicated that both chelating resin;referred to as resin M and I;adsorb V and Mo effectively. The effects of contact time, pH and temperature on ion exchange behavior of two metal ions was studied. The adsorption isotherms were described by means of Langmuir and Freundlich models. Langmuir isotherm model showed that resin M adsorbs more V and Mo than I. Freundlich isotherm model indicated that the adsorption capacity of V is insenstive to the change in the equilibrium concentration of solute. However the adsorption capacity of Mo is influenced by the change in the equilibrium concentration of solute. The kinetic data were tested using the Lagergren-first-order and pseudo-second-order kinetic models. Data for Ion exchange of V and Mo correlated well with the pseudo-second-order kinetic model, indicating that the chemical adsorption was the rate-limiting step. The activation energy for the exchange of V and Mo on resin I and M is 36.92、6.16、38.02、0.75 kJ mole-1 respectively. Various thermodynamic parameters for exchange reactions between I、M and V、Mo such as Gibbs free energy change ( G0), enthalpy change( H0) and entropy change( S0) were calculated. A negative G0 indicated that the ion exchange of V and Mo from solution using I was feasible. Results of batch desorption tests show that V ions on resin M and I were succesfully desorbed by using H2SO4 and NaOH respectively. Mo ions on resin M and I were succesfully desorbed by using NH4OH and NaOH respectively.
    The results of column tests indicated that the slower the flow rate of feed solution the better the adsorption of V and Mo. Maintaining the pH of leachate at 2, resin I has the highest adsorption capacity for V and Mo. Resin I adsords ions in the following order: Mo> V>> Ni> Al. Having operated for 140B.V in adsorption mode, the loaded resin I can be successfully eluted. Finally, a V concentrate with 1200ppm peak concentration and 87.3 purity and a Mo concentrate with 1800ppm peak concentration and 99.1 purity were obtained.

    摘要 ..................................................... I Abstract ............................................... III 致謝 ..................................................... V 目錄 .................................................... VI 表目錄 .................................................. IX 圖目錄 .................................................. XI 第一章 緒論 ............................................... 1 1-1研究背景 ............................................... 1 1-2研究目的 ............................................... 5 第二章 理論基礎與前人研究 ................................... 7 2-1純化方法 ............................................... 7 2-2離子交換法[12-14] ...................................... 8 2-2-1離子交換樹脂介紹[18] .................................. 8 2-2-2離子交換樹脂分類 ...................................... 9 2-2-3離子交換反應[19-21] ................................. 15 2-2-4管柱狀離子交換程序 ................................... 19 2-3吸附作用[23, 24] ...................................... 21 2-3-1等溫吸附模式[25-28] ................................. 21 2-3-2吸附熱力學模式 ....................................... 24 2-3-3吸附動力學模式[30-32] ................................ 25 2-4前人研究 .............................................. 28 2-4-1鉬的物種 ............................................ 28 2-4-2釩的物種 ............................................ 29 2-4-3釩、鉬分離 .......................................... 31 第三章 實驗方法與步驟 ...................................... 38 3-1實驗流程 .............................................. 38 3-2 實驗材料與設備 ........................................ 39 3-2-1實驗材料 ............................................ 39 3-2-2實驗設備 ............................................ 42 3-3 實驗步驟.............................................. 44 3-3-1樹脂前處裡 .......................................... 44 3-3-2樹脂吸附批次實驗 ..................................... 44 3-3-3樹脂脫附批次實驗 ..................................... 45 3-3-4離子交換管柱實驗 ..................................... 45 第四章 結果與討論 ......................................... 47 4-1 離子交換批次實驗 ...................................... 47 4-1-1 pH值對樹脂吸附V、Mo的影響 ............................ 47 4-1-2 樹脂吸附達平衡所需時間 ............................... 50 4-1-3 樹脂等溫吸附 ....................................... 51 4-1-4 樹脂吸附動力學 ...................................... 55 4-1-5 樹脂吸附活化能 ...................................... 62 4-1-6 樹脂吸附熱力學 ...................................... 64 4-1-7 樹脂脫附實驗 ....................................... 66 4-2離子交換管柱實驗 ....................................... 72 4-2-1管柱進料流速之影響 ................................... 72 4-2-2進料中釩、鉬不同含量比之影響 ........................... 75 4-2-3不同進料pH值之影響 ................................... 78 4-2-4吸附時進料處理量對吸附效果之影響 ....................... 84 4-2-5不同濃度進料之影響 ................................... 90 4-2-6 IRC748分離V、Mo操作之規模放大 ........................ 94 4-2-7不同pH值對IRC748吸附Ni、Al之影響 ...................... 96 4-2-8 F離子對IRC748吸附Ni、Al之影響 ....................... 99 第五章 結論 ............................................. 102 參考文獻 ................................................ 104

    [1] Angelidis TN, Tourasanidis E, Marinou E, Stalidis GA. Selective dissolution of critical metals from diesel and naptha spent hydrodesulphurization catalysts. Resources,Conservation and Recycling. 1995;13(3-4):269-82.
    [2] 向鐵根. 鉬冶金. 中南大學出版社. 2005:6-7.
    [3] Sun DD, Tay JH, Cheong HK, Leung DLK, Qian GR. Recovery of heavy metals and stabilization of spent hydrotreating catalyst using a glass-ceramic matrix. Journal of Hazardous Materials. 2001;87(1-3):213-23.
    [4] 張國慶. 廢觸媒資源化技術與福誼公司資源化成果. 環境工程專欄. 2005;No.31.
    [5] 孫錦宜. 催化劑回收利用. 化學工業出版社. 2001:pp19-20.
    [6] 蘇英源, 郭金國. 冶金學. 全華科技圖書股份有限公司. 2000.
    [7] 李洪桂, 鄭清遠, 張启修, 鄭蒂基. 濕法冶金學. 中南大學出版社. 1998.
    [8] 劉公召, 隋智通. 從HDS廢催化劑中提取釩與鉬的研究. 2002;第二期:39-41.
    [9] 李洪桂. 稀有高溶點金屬. 冶金工業出版社. 1999:279.
    [10] 張启修, 趙秦生. 鎢鉬冶金. 冶金工業出版社. 2005.
    [11] Zeng L, Cheng CY. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts Part II: Separation and purification. Hydrometallurgy. 2009;98(1-2):10-20.
    [12] 張文青. 分離分析化學. 華東理工大學出版社. 2007:157-83.
    [13] 蘇弘毅. 有害廢棄物處理. 高立圖書有限公司. 2003:207-61.
    [14] 謝佳穎. 以離子交換樹脂分離藍泥浸漬液中鈷、鎳、鋁之研究. 國立
    105
    成功大學 資源工程研究所 碩士論文. 2012.
    [15] Lehto J. The nuclear industry: ion exchange. Academic Press. 2000:3509-17.
    [16] Cavaco SA, Fernandes S, Quina MM, Ferreira LM. Removal of chromium from electroplating industry effluents by ion exchange resins. Journal of Hazardous Materials. 2007;144(3):634-8.
    [17] Dabrowski A, Hubicki Z, Podkoscielny P, Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 2004;56(2):91-106.
    [18] SCHMUCKLER G. Chelating resins-their analytical properties and applications. Talanta. 1965(12):281-90.
    [19] Navarro RR, Tatsumi K, Sumi K, Matsumura M. Role of anions on heavy metal sorption of a cellulose modified with poly(glycidyl methacrylate) and polyethyleneimine. Water Res. 2001;35(11):2724-30.
    [20] Atia AA, Donia AM, Elwakeel KZ. Selective separation of mercury(II) using a synthetic resin containing amine and mercaptan as chelating groups. React Funct Polym. 2005;65(3):267-75.
    [21] Ling PP, Liu FQ, Li LJ, Jing XS, Yin BR, Chen KB, et al. Adsorption of divalent heavy metal ions onto IDA-chelating resins: Simulation of physicochemical structures and elucidation of interaction mechanisms. Talanta. 2010;81(1-2):424-32.
    [22] Weber WJ. Physicochemical processes for water quality control. Copyright. 1972:263.
    [23] Naushad M, Al-Othman ZA, Islam M. Adsorption of cadmium ion using a new composite cation-exchanger polyaniline Sn(IV) silicate: kinetics, thermodynamic and isotherm studies. Int J Environ Sci Technol. 2013;10(3):567-78.
    [24] Liu Y, Liu Y-J. Biosorption isotherms, kinetics and thermodynamics.
    106
    Separation and Purification Technology. 2008;61(3):229-42.
    [25] Langmuir I. The adsorption of gases on plane surfaces of glass mica and platinum. J Am Chem Soc. 1918;40:1361-403.
    [26] Shahbazi A, Younesi H, Badiei A. Batch and fixed-bed column adsorption of Cu(II), Pb(II) and Cd(II) from aqueous solution onto functionalised SBA-15 mesoporous silica. Can J Chem Eng. 2013;91(4):739-50.
    [27] Levant MD, Vermeulen T. Binary Langmuir and Freundlich Isotherms for Ideal Adsorbed Solutions. J Phys Chem. 1901;85:3247-50.
    [28] JanssonCharrier M, Guibal E, Roussy J, Delanghe B, LeCloirec P. Vanadium (IV) sorption by chitosan: Kinetics and equilibrium. Water Res. 1996;30(2):465-75.
    [29] Misak NZ. Langmuir isotherm and its application in ion-exchange reactions. React Polym. 1993;21(1-2):53-64.
    [30] Azizian S. Kinetic models of sorption: a theoretical analysis. Journal of colloid and interface science. 2004;276(1):47-52.
    [31] Marczewski AW. Analysis of Kinetic Langmuir Model. Part I: Integrated Kinetic Langmuir Equation (IKL): A New Complete Analytical Solution of the Langmuir Rate Equation. Langmuir. 2010;26(19):15229-38.
    [32] Namasivayam C, Sangeetha D. Removal of molybdate from water by adsorption onto ZnCl2 activated coir pith carbon. Bioresour Technol. 2006;97(10):1194-200.
    [33] Tkac P, Paulenova A. Speciation of molybdenum (VI) in aqueous and organic phases of selected extraction systems. Sep Sci Technol. 2008;43(9-10):2641-57.
    [34] Guibal E, Milot C, Tobin JM. Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies. Ind Eng Chem Res. 1998;37(4):1454-63.
    [35] Navarro R, Guzman J, Saucedo I, Revilla J, Guibal E. Recovery of metal ions by chitosan: Sorption mechanisms and influence of metal speciation.
    107
    Macromol Biosci. 2003;3(10):552-61.
    [36] Olazabal MA, Orive MM, Fernandez LA, Madariaga JM. Selective extraction of vanadium (V) from solutions containing molybdenum (VI) by ammonium salts dissolved in toluene. Solvent Extr Ion Exch. 1992;10(4):623-35.
    [37] Guzman J, Saucedo I, Navarro R, Revilla J, Guibal E. Vanadium interactions with chitosan: Influence of polymer protonation and metal speciation. Langmuir. 2002;18(5):1567-73.
    [38] Yusuf M, Sarki AC, Idris SB, Ayoko GA, Singh K. Separation and Determination of Selenium(IV) and Molybdenum(VI) in Mixtures by Selective Precipitation with Potassium Thiocarbonate. Talanta. 1988;35(6):496-8.
    [39] Parks JL, Edwards M. Precipitative removal of As, Ba, B, Cr, Sr, and V using sodium carbonate. J Environ Eng-ASCE. 2006;132(5):489-96.
    [40] Shi YF, Wang HB. The separation of molybdenum and vanadium from spent catalyst. China Molybdenum Industry. 2004;28(2):39-41.
    [41] Suzuki, Gao SL. Recovery of valuable metals in spent heavy oil hydrodesulphurisation catalyst. Japanese Pat. 1982.
    [42] BISWAS RK, WAKIHARA M, TANIGUCHI M. Recovery of vanadium and molybdenum from heavy oil desulphurization waste catalyst. Hydrometallurgy,. 1985;14:219--30.
    [43] Park KH, Reddy BR, Mohapatra D, Nam CW. Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst. Int J Miner Process. 2006;80(2-4):261-5.
    [44] L JE, Lakewood C. Process for recovering molybdenum from solution in a form that is substantially free from vanadium. US Patent 1989;4814149
    [45] Zhang P, Inoue K, Yoshizuka K, Tsuyama H. Extraction and selective stripping of molybdenum(VI) and vanadium(IV) from sulfuric acid solution
    108
    containing aluminum(III), cobalt(II), nickel(II) and iron(III) by LIX 63 in Exxsol D80. Hydrometallurgy. 1996;41:45-53.
    [46] Lozano LJ, Godinez C. Comparative study of solvent extraction of vanadium from sulphate solutions by primene 81R and alamine 336. Miner Eng. 2003;16(3):291-4.
    [47] Park KH, Kim HI, Parhi PK. Recovery of molybdenum from spent catalyst leach solutions by solvent extraction with LIX 84-I. Separation and Purification Technology. 2010;74(3):294-9.
    [48] Zeng L, Cheng CY. Recovery of molybdenum and vanadium from synthetic sulphuric acid leach solutions of spent hydrodesulphurisation catalysts using solvent extraction. Hydrometallurgy. 2010;101(3-4):141-7.
    [49] Kar BB, Datta P, Misra VN. Spent catalyst: secondary source for molybdenum recovery. Hydrometallurgy. 2004;72(1-2):87-92.
    [50] Park KH, Mohapatra D, Reddy BR. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method. Journal of Hazardous Materials. 2006;138(2):311-6.
    [51] Kononova ON, Kholmogorov AG, Kachin SV, Kalyakina OP, Sadovskaya EV. Ion exchange recovery of molybdenum from nitric acidic solutions using macroporous anion exchangers with long-chained cross-linking agents. Hydrometallurgy. 2003;68(1-3):83-7.
    [52] Atia AA, Donia AM, Awed HA. Synthesis of magnetic chelating resins functionalized with tetraethylenepentamine for adsorption of molybdate anions from aqueous solutions. Journal of Hazardous Materials. 2008;155(1-2):100-8.
    [53] Henry P, Van Lierde A. Selective separation of vanadium from molybdenum by electrochemical ion exchange. Hydrometallurgy. 1998;48(1):73-81.
    [54] Parschova H, Matejka Z, Mistova E. Mutual separation of (W, As, Mo, V,
    109
    Ge, B) oxoanions from bi-metallic solution by resin having methyl-amino-glucitol moiety. Sep Sci Technol. 2008;43(5):1208-20.
    [55] Li QG, Zeng L, Mao LS, Yang YN, Zhang QX. Completely removing vanadium from ammonium molybdate solution using chelating ion exchange resins. Hydrometallurgy. 2009;98(3-4):287-90.
    [56] Hu J, Wang X, Xiao L, Song S, Zhang B. Removal of vanadium from molybdate solution by ion exchange. Hydrometallurgy. 2009;95(3-4):203-6.
    [57] Wang XW, Wang MY, Shi LH, Hu JA, Qiao P. Recovery of vanadium during ammonium molybdate production using ion exchange. Hydrometallurgy. 2010;104(2):317-21.
    [58] Nguyen TH, Lee MS. Separation of molybdenum and vanadium from acid solutions by ion exchange. Hydrometallurgy. 2013;136:65-70.
    [59] 李青剛, 肖連生, 王學文. 從鉬酸銨溶液中分離去除釩的淨化方法. 中國專利. 2006;CNl792819.
    [60] 肖連生, 王學文, 李青剛. 一種含釩鉬酸鹽溶液深度除釩的方法. 中國專利. 2006;CNl01062785.
    [61] Hab K. Fundamentals of aqueous metallurgy.Chapter 8:404.

    下載圖示 校內:2018-07-17公開
    校外:2018-07-17公開
    QR CODE