| 研究生: |
黃智揚 Huang, Chih-Yang |
|---|---|
| 論文名稱: |
可開闔式真空取模系統於小腿殘肢之應用 Detachable Vacuum Casting System for Transtibial Stump Duplication |
| 指導教授: |
許來興
Hsu, Lai-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 小腿義肢承筒 、真空取模系統 、逆向工程 、三維列印技術 |
| 外文關鍵詞: | Transtibial socket, Vacuum casting system, Reverse engineering, 3D printing technology |
| 相關次數: | 點閱:214 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前小腿義肢承筒主要由義肢師以手工製作,首先需使用石膏繃帶擷取患者殘肢形狀,以製作出殘肢石膏陽模,此過程繁複且耗時。接著還要進行複雜的石膏陽模外形修改,此步驟十分仰賴義肢師的經驗與技術。且承筒製作完成後原始的石膏陽模早已破壞無法保留。
本研究設計製作真空取模系統,以快速取得殘肢陽模。並參考逆向工程的概念,藉由三維掃描系統取得殘肢模型點資料,以提供承筒模型設計軟體進行編修,且掃描得到的殘肢形狀點資料可以保留。製作後的承筒檔案配合三維列印機(3D Printer, 3DP)製作承筒模型。期待藉由該取模流程改善傳統手工石膏陽模取模耗時、浪費材料等缺點,並有效提昇三維列印技術在小腿義肢承筒製作上之應用性,以協助義肢師製做品質穩定的小腿義肢承筒。
本研究發展之可開闔式真空取模系統,導入PTB(Patella-Tendon-Bearing)式承筒之概念應用於真空取模系統,先在患者殘肢之非耐壓區貼附襯墊以增加空間,減少與承筒接觸時的壓力,且依據殘肢狀況來評估襯墊的厚度、範圍及形狀。將貼附襯墊的殘肢置於陰模腔體中,闔上腔體並在外側提供預壓力,接著抽真空使腔體變硬後,開啟腔體即可輕易的取出患者殘肢,再次闔上並定位腔體,即可獲得殘肢陰模。再於此陰模注入矽砂粒,完成密封並抽真空以快速複製殘肢模型。
本研究以殘肢石膏模型進行取模測試,在掃描取得模型點資料後,以軟體輔助疊合數個相同石膏模型之點資料,驗證本研究工具取得模型點資料之一致性與穩定性。此外,徵求了二位小腿截肢患者參與,以本研究設計製作之真空取模工具取得患者殘肢形狀,並實際製作出義肢承筒供患者穿戴測試,患者主觀感覺並無不適之處,且由實驗結果顯示,製作出的承筒與殘肢的接觸壓力均小於患者可忍耐的疼痛壓力,可知本研究於取模前在非耐壓區貼附襯墊之步驟確實達到成效,且取得之殘肢模型形狀正確,輔以包含三維列印機的小腿義肢承筒製作流程,即可用基本手藝做出適合患者的義肢承筒。
Currently, a transtibial socket is manually fabricated by a prosthetist. First step is to capture the stump shape of the amputee by using plaster bandages to produce a plaster stump mold. A complex process to modify the shape of the plaster mold is then followed. This procedure heavily depends on the experiences and skills of the prosthetist and is time-consuming. The modified plaster mold is then used to making a transtibial socket. The original plaster mold should be removed and can’t be reserved after a socket is produced.
Based on the concept of reverse engineering and ‘dilatancy’, this research designed and manufactured a vacuum casting system to quickly duplicate the stump mold of an amputee. The casting system includes a detachable two-bag casting tool connected to a vacuum pump. Then combining some emerging technologies to develop a fabrication process of transtibial socket named CAD/3DP process, to ameliorate the shortcoming of the traditional process such as time-consuming and the requirement of plaster modification skills. This improvement can effectively enhance the application of 3D printing technology on the transtibial socket production, and to assist a prosthetist to fabricate stable quality of transtibial prosthetic sockets.
Two amputees participated the use of the vacuum casting system and the CAD/3DP process to produce transtibial sockets. The results of socket fits and contact pressures between stump and socket demonstrated that acceptable transtibial sockets can be fabricated by an inexperienced prosthetist.
[Bowk 92] Bowker, J. H., Michael, J. W., et al., Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles, 2nd Ed., ch 18B, Rosemont, IL: Mosby-Year Book, 1992.
[Conv 99] Convery, J. and Buis, A. W. P. “Socket/Stump interface dynamic pressure distributions recorded during the prosthetic stance phase of gait of a trans-tibial amputee wearing a hydrocast socket,” Prosthetics and Orthotics International, 23, pp. 107-112, 1999.
[Cube 14] CubeX, TECHSPECS, http://cubify.com/Products/CubeXTechSpecs, 2014.
[Davi 14] DAVID-LASSERSCANEER, DAVID Starter-Kit, http://www.david-laserscanner.com. 2014.
[Foor 65] Foort, J., “The Patella-Tendon Bearing Prosthesis for Below-Knee Amputees, a Review of Technique and Criteria,” Artificial Limbs, 9(1), pp. 4-13, 1965.
[Ferg 99] Fergason, J. and Smith, D. G., “Socket considerations for the patient with a transtibial amputation,” Clinical Orthopaedics & Related Research, (361), pp. 76-84, 1999.
[Fair 13] Fairley, M., CAD/CAM’s Expanding Potential, http://www.oandp.com, 2013.
[Geom 14] Geomagic, Geomagic Studio, http://www.geomagic.com/en, 2014.
[Icer 03] Iceross Seal-In, Hypobaric Sealing Membrane Technical Manual, http://www.ossur.com/?PageID=12705, 2003.
[IDF 14] International Diabetes Federation , DIABETES IN TAIWAN–2013, http://www.idf.org/membership/wp/taiwan, 2014.
[Jens 05] Jensen, J. S., Poetsma, P. A., and Thanh, N. H., “Sand-casting technique for transtibial prostheses,” Prosthet Orthot Int, 29, pp. 165-175, 2005.
[Kuhn 66] Kuhn, G. G., Atlas d'Appareillage Prothetique et Orthopedique, No. 14 KBM-Prothese, Faculté de Médecine de Nancy, 1966.
[Mead 45] Mead, W. J., Method for making and maintaining an impression of the shape of an object, United States patent number:2472754. 1945.
[Murd 68] Murdoch, G., “Fitting of the below-knee amputation stump: The Dundee socket for the below-knee amputation,” Prosthetics International, 3(4/5), pp. 15-21, 1968.
[McGa 08] McGarry, T., McHugh, B., Buis, A., and McKay, G., “Evaluation of the effect of shape on a contemporary CAD system,” Journal of Prosthetics and Orthotics International, pp. 1-10, 2008.
[Össu 14] Össur, Össur Icecast Anatomy, http://www.ossur.co.uk/prosthetics/sockets/icecastanatomy, 2014.
[Pfal 66] Pfaltzgraff, R. E., “A simplified below-knee prosthesis,” Bull Prosthet Res, 10(5), pp. 48-57, 1966.
[Radc 61] Radcliffe, C. W. and Foort, J., The Patellar-Tendon-Bearing Below-Knee Prosthesis, University of California (Berkeley and San Francisco), Biomechanics Laboratory, 1961.
[Staa 87] Staats, T. B. and Lundt, J., “The UCLA Total Surface Bearing Suction Below-Knee Prosthesis,” Clinical Prosthetics and Orthotics, 11, pp. 118-130, 1987.
[Sand 95] Sanders, J. E. “Interface mechanics in external prosthetics: review of interface stress measurement techniques,” Medical & biological engineering & computing, 33, pp. 509-516, 1995.
[Teks 14] Tekscan, Tekscan Pressure Sensors, http://www.tekscan.com, 2014.
[Than 07] Thanh, N. H., Poetsma, P. A., and Jensen, J. S., “Field experience with Sand-casting and Wu-Casting systems in Vietnam,” Proceeding of 12th ISPO World Congress, pp. 89, 2007.
[Tzen 99] Tzeng, M. J., Assessing two designs of trans-tibial prosthetic sockets by experimental measurement and numerical analysis, PhD thesis, National Center for Training and Education in Prosthetics and Orthotics, University of Strathclyde , Glasgow, Scotland, United Kingdom, 1999.
[Wu 03] Wu, Y., Casanova, H., Smith, W. K., Edwards, M. and Childress, D. S., “CIR sand casting system for trans-tibial socket”, International Society for Prosthetics and Orthotics, 27, pp. 146-152, 2003.
[Wu 09] Wu,Y., Casanova, H. R., Reisinger, K.D., Smith, W.K., Childress, D.S., “CIR casting system for making transtibial sockets,” Prosthetics and Orthotics International, 33(1), pp. 1-9, 2009.
[內 13] 內政部統計處,內政部統計月報-身心障礙者人數-障礙、縣市及年齡別,sowf.moi.gov.tw/stat/list.htm, 2013.
[平 14] 平冠勛,使用CAD軟體之API建立小腿義肢承筒模型設計系統,國立成功大學機械工程學系,碩士論文,台南市,2014。
[周 98] 周榮源,陳峰志,鄭鴻斌,張郁雯,半導體製造設備用真空泵浦技術,機械月刊275期六月號,pp. 412-424,1998。
[紀 10] 紀傑騰,真空成形殘肢模型應用於膝下義肢承筒之設計與製作,國立成功大學機械工程學系,碩士論文,台南市,2010。
[莊 10] 莊惟喬,全接觸式快速原型膝下義肢承筒網格化設計系統,國立成功大學機械工程學系,碩士論文,台南市,2010。
[葉 14] 葉少彬,可編修小腿義肢承筒模型形狀之介面系統,國立成功大學機械工程學系,碩士論文,台南市,2014。
[廖 13] 廖紹宇,使用MFC與OpenGL建構含懸吊系統之小腿義肢承筒設計軟體,國立成功大學機械工程學系,碩士論文,台南市,2013。
[賴 11] 賴昆宏,全接觸式小腿義肢承筒之有限元素分析與實驗評估,國立成功大學機械工程學系,碩士論文,台南市,2011。
[蘇 09] 蘇青森,真空技術精華Vacuum Technolgy,五南圖書,台北市,2009。