簡易檢索 / 詳目顯示

研究生: 林祺翔
Lin, Chi-Hsiang
論文名稱: 配置飛輪電池之油電混合車之最佳能量管理策略
Optimal Energy Management for HEVs Equipped by Flywheel Cells
指導教授: 蔡南全
Tsai, Nan-Chyuan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 139
中文關鍵詞: 飛輪電池油電混合車能量管理策略適應性等效油耗最小策略換檔地圖硬體迴路
外文關鍵詞: Flywheel Cell, Hybrid Electric Vehicle, Gear Shift Map, Adaptive Equivalent Consumption Minimization Strategy, Hardware-in-the-Loop
相關次數: 點閱:118下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對配置飛輪電池(Flywheel Cell)之油電混合車(Hybrid Electric Vehicle, HEV),提出一能量管理策略(Energy Management Strategy, EMS),使用適應性等效油耗最小策略(Adaptive Equivalent Consumption Minimization Strategy, A-ECMS),將引擎之燃油、飛輪儲存之動能與鉛酸電池(Lead-acid Battery, LAB)儲存之化學能皆視為等效油耗,合併成一成本函數(Cost Function),接著使用遺傳基因演算法(Genetic Algorithm, GA),藉由最佳化此成本函數,以求出最佳動力分配比例(Power Split Ratio)。
    本論文之研究目標在於: (i) 降低燃油消耗; (ii) 維持鉛酸電池電量; (iii) 延長鉛酸電池壽命。 為了達到上述目標,本論文考量電池之壽命模型,額外添加“電池充放電電流”與“電池溫度”之限制於最佳化求解之限制式(Constraints)中,以避免電池長期處於加速老化之使用區間,同時持續地更新適應性等效油耗最小策略中的等效因子,使其能於電量低時,提高使用鉛酸電池之化學能的成本,反之則降低其成本以避免電量過高。
    此外,由於本論文選用自手排變速箱(Automated Manual Transmission, AMT)作為調整內燃機引擎(Internal Combustion Engine, ICE)操作點之變速系統,每當變換檔位時皆會造成引擎操作點大幅度地改變,使得動力輸出中斷,因而影響乘客舒適度。 因此,本論文導入了二維換檔地圖(2-dimensional Shift Map, 2DGSM),選擇“輪軸轉速”與“引擎輸出扭矩”作為升檔/降檔/維持當前檔位之依據,最後加入速度緩衝區間(Buffer Zone),藉此避免過度換檔之情況發生。
    本論文使用由車輛模擬軟體ADVISOR(ADvanced VehIcle SimulatOR)與MATLAB/Simulink建立之基於後視法(Backward-facing Method)之油電車模型,將提出之控制器整合於其中作為初步模擬分析。 由Simulink模擬之結果得知,配置飛輪電池之HEV搭配本論文提出之能量管理策略與未配置飛輪電池之傳統燃油車相比,於油耗方面,在市區行車型態最高可達到16.10 %之降幅,於郊區行車型態最高可達到10.24 %之降幅,於高速公路行車型態則可達到5.97 %之降幅。 此外,鉛酸電池電量(LAB SOC)亦可維持於[0.45, 0.55]之安全區間中,且其充放電電流與電池溫度均可維持於正常使用區間中。 為了進一步驗證此控制器可應用於實務上,本論文建立一硬體迴路(Hardware-in-the-Loop, HIL)實驗平台,且由實驗結果可知: 雖然整體性能因訊息傳遞產生之時間延遲而有所影響,造成實際換檔延後且油耗改善些微變差,但整體趨勢相當符合電腦模擬之結果,驗證了本論文提出之能量管理策略在理論與實務中均有卓越的成效。

    SUMMARY
    For Hybrid Electric Vehicles (HEVs) equipped by Flywheel Cells (FWCs), a novel Energy Management Strategy (EMS), named as A-ECMS-2, is proposed. A-ECMS-2 is composed by 2-dimensional Gear Shift Map (2DGSM) and Adaptive Equivalent Consumption Minimization Strategy (A-ECMS). Owing to discrete-ratio transmission employed, 2DGSM is construsted to avoid shift hunting and used to improve the fuel economy on Internal Combustion Engine (ICE). Under ECMS, the optimal torque split ratio between ICE and FWCs is determined by Genetic Algorithm (GA). In addition, to retain the battery State of Charge (SOC), the equivalence factor is on-line tuned by the feedback of the achievable SOC, which can be evaluated out of current SOC, rotary speed of flywheel and vehicle speed. At design stage, the simulation softwares, namely ADVISOR (ADvanced VehIcle SimulatOR) and MATLAB/Simulink, are employed to verify A-ECMS-2. Furthermore, to ensure its feasibility in real-world circumstances, A-ECMS-2 is lodged onto the embedded DSP chip to conduct the Hardware-in-the-Loop (HIL) experiments. The results of simulations show that: (i) the improvement degree of fuel economy is up to 16.10 % in comparison to pure ICE vehicles without FWC; (ii) the battery SOC can be retained within [0.45, 0.55] for any driving cycle studied in the thesis. The experimental results by HIL experiments are pretty close to the computer simulations undertaken by MATLAB/Simulink earlier. According to the examinations by both HIL experiments and computer simulations, A-ECMS-2 can be potentially applied to the real-world vehicles and FWCs are proved to greatly manifest its superior fuel reduction effect.

    Keywords: Flywheel Cell, Hybrid Electric Vehicle, Gear Shift Map, Adaptive Equivalent Consumption Minimization Strategy, Hardware-in-the-Loop.

    摘要 I 延伸摘要 III 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 符號 XIX 第一章 緒論 1 1.1 前言 1 1.2 變速系統介紹 3 1.3 文獻回顧 5 1.3.1 配置飛輪電池之原型車回顧 7 1.3.2 飛輪電池能量管理策略文獻回顧 9 1.3.3 動力分配策略文獻回顧 11 1.4 研究動機與目的 13 1.5 論文架構 15 第二章 配置飛輪電池之油電車建模 16 2.1 動力鏈類型 17 2.2 模擬方法介紹 19 2.3 模型概述 21 2.3.1 行車型態模塊 22 2.3.2 車體動力模塊 26 2.3.3 輪胎模塊 28 2.3.4 終端傳動/扭矩耦合模塊 30 2.3.5 引擎變速箱模塊 31 2.3.6 離合器模塊 32 2.3.7 內燃機引擎模塊 33 2.3.8 行星齒輪模塊 34 2.3.9 飛輪電池模塊 40 2.3.10 鉛酸電池模塊 43 第三章 換檔地圖與能量管理策略設計 50 3.1 控制架構 51 3.2 搭配飛輪電池之油電車最佳換檔地圖設計 52 3.2.1 最佳升檔點分析 53 3.2.2 群聚分析 57 3.2.3 配置飛輪電池之油電車最佳換檔地圖 64 3.3 控制策略設計 66 3.3.1 適應性等效油耗最小策略 66 3.3.2 電池電量預測 70 3.3.3 遺傳基因演算法 73 3.4 電腦模擬結果 75 3.4.1 最佳換檔地圖模擬結果 78 3.4.2 控制策略模擬結果 82 3.4.3 小結 101 第四章 硬體迴路實驗與分析 102 4.1 硬體迴路介紹 102 4.2 實驗架構 104 4.3 實驗設備 107 4.3.1 數位訊號處理器 108 4.3.2 控制器區域網路介面卡 110 4.3.3 其餘設備 113 4.4 實驗結果與結論 114 4.4.1 基因演算法參數調校 114 4.4.2 實驗結果 117 4.4.3 小結 127 第五章 結論與未來展望 129 5.1 結論 129 5.2 未來展望 131 參考文獻 134

    1. Dudley, B. (2017), BP Statistical Review of World Energy 2017, British Petroleum. Available at: https://www.bp.com/
    2. 謝騄璘 (2017),臺灣綠色產業深度報告【全球電動車市場概況與我國關鍵議題】,工研院。
    3. 李承儒 (2013),【特別企劃】寡難敵眾 ─ 雙離合器自手排變速箱與其他變速箱優缺點比較,CarStuff。 Available at:
    http://www.carstuff.com.tw/group-test/item/6635-2014-02-22-08-05-48.html
    4. 林宜慶 (2009),增加續航力的KERS動能回收系統介紹,車輛測試中心。 Available at:
    https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=51
    5. 江基風 (2014),飛輪儲能系統應用現況及前景分析,大葉大學。 Available at: http://av.dyu.edu.tw/word_file/FESS_P.pdf
    6. Leggett, D. (2014), ANALYSIS: Volvo Flybrid KERS Technology, Justauto. Available at:
    https://www.just-auto.com/analysis/volvo-flybrid-kers-technology_id145785.aspx
    7. van Berkel, K., Hofman, T., Vroemen, B., and Steinbuch, M. (2012), Optimal Control of a Mechanical Hybrid Powertrain, IEEE Transactions on Vehicular Technology, 61(2), 485-497.
    8. He, J., Ao, G., Guo, J., Chen, Z., and Yang, L. (2009), Hybrid Electric Vehicle with Flywheel Energy Storage System, WSEAS Transactions on Systems, 9(15), 638-648.
    9. Enang, W., and Bannister, C. (2017), Robust Proportional ECMS Control of a Parallel Hybrid Electric Vehicle, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(1), 99-119.
    10. Josevski, M., and Abel, D. (2014), Energy Management of Parallel Hybrid Electric Vehicles Based on Stochastic Model Predictive Control, IFAC Proceedings Volumes, 47(3), 2132-2137.
    11. Markel, T., Brooker, A., Hendricks, T., Johnson, V., Kelly, K., Kramer, B., O’Keefe, M., Sprik, S., and Wipke, K. (2002), ADVISOR: A Systems Analysis Tool for Advanced Vehicle Modeling, Journal of Power Sources, 110(2), 255-266.
    12. Gao, D. W., Mi, C., and Emadi, A. (2007), Modeling and Simulation of Electric and Hybrid Vehicles, Proceedings of the IEEE, 95(4), 729-745.
    13. van Berkel, K., Rullens, S., Hofman, T., Vroemen, B., and Steinbuch, M. (2014), Topology and Flywheel Size Optimization for Mechanical Hybrid Powertrains, IEEE Transactions on Vehicular Technology, 63(9), 4192-4205.
    14. Wipke, K. B., Cuddy, M. R., and Burch, S. D. (1999), ADVISOR 2.1: A User-friendly Advanced Powertrain Simulation Using a Combined Backward/Forward Approach, IEEE Transactions on Vehicular Technology, 48(6), 1751-1761.
    15. Reeves, K., Montazeri, A., and Tayor, C. J. (2016), Validation of a Hybrid Electric Vehicle Dynamics Model for Energy Management and Vehicle Stability Control, In Industrial Electronics (ISIE), 2016 IEEE 25th International Symposium on (pp. 849-854). IEEE.
    16. Read, M. G., Smith, R. A., and Pullen, K. R. (2015), Optimisation of Flywheel Energy Storage Systems with Geared Transmission for Hybrid Vehicles, Mechanism and Machine Theory, 87, 191-209.
    17. 吳東穎 (2018),應用於車體防翻覆之飛輪模組設計與初步驗證,碩士論文,國立成功大學。
    18. 呂晏州 (2018),針對電車內建飛輪能量交換單元之無感測控制及監測,碩士論文,國立成功大學。
    19. Tsao, P., Senesky, M., and Sanders, S. R. (2003), An Integrated Flywheel Energy Storage System with Homopolar Inductor Motor/Generator and High-frequency Drive, IEEE Transactions on Industry Applications, 39(6), 1710-1725.
    20. Johnson, V. H. (2002), Battery Performance Models in ADVISOR, Journal of Power Sources, 110(2), 321-329.
    21. Voelcker, J. (2016), Toyota Hybrid Battery Replacement Cost Guide (2016 update), Green Car Reports. Available at:
    https://www.greencarreports.com/news/1078138_toyota-hybrid-battery-replacement-cost-guide
    22. Paganelli, G., Delprat, S., Guerra, T. M., Rimaux, J., and Santin, J. J. (2002), Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains, In Vehicular Technology Conference, 2002. VTC Spring 2002. IEEE 55th (Vol. 4, pp. 2076-2081). IEEE.
    23. Onori, S., and Serrao, L. (2011), On Adaptive-ECMS Strategies for Hybrid Electric Vehicles, In Proceedings of the International Scientific Conference on Hybrid and Electric Vehicles, Malmaison, France (Vol. 67).
    24. Sundstrom, O., and Guzzella, L. (2009), A Generic Dynamic Programming Matlab Function, In Control Applications,(CCA) & Intelligent Control,(ISIC), 2009 IEEE (pp. 1625-1630). IEEE.
    25. Sundström, O., Ambühl, D., and Guzzella, L. (2010), On Implementation of Dynamic Programming for Optimal Control Problems with Final State Constraints, Oil & Gas Science and Technology-Revue de l’Institut Français du Pétrole, 65(1), 91-102.
    26. Ngo, V. D., Hofman, T., Steinbuch, M., and Serrarens, A. (2014), Gear Shift Map Design Methodology for Automotive Transmissions, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 228(1), 50-72.
    27. 羅積玉 (1990),多元統計分析方法與應用,台北市: 科技圖書股份有限公司.
    28. Pena, J. M., Lozano, J. A., and Larranaga, P. (1999), An Empirical Comparison of Four Initialization Methods for the K-means Algorithm, Pattern Recognition Letters, 20(10), 1027-1040.
    29. Zhang, Y., Chen, X., Zhang, X., Jiang, H., and Tobler, W. (2005), Dynamic Modeling and Simulation of a Dual-clutch Automated Lay-shaft Transmission, Journal of Mechanical Design, 127(2), 302-307.
    30. Kirtane, C., Ghodke, S., Kurode, S., Prakash, A. K., and Malkhede, D. N. (2013), Gear Shift Schedule Optimization and Drive Line Modeling for Automatic Transmission, In 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India.
    31. Serrao, L., Onori, S., Sciarretta, A., Guezennec, Y., and Rizzoni, G. (2011), Optimal Energy Management of Hybrid Electric Vehicles Including Battery Aging, In American Control Conference (ACC), 2011 (pp. 2125-2130). IEEE.
    32. What is V-model advantages, disadvantages and when to use it, ISTQB. Available at:
    http://istqbexamcertification.com/what-is-v-model-advantages-disadvantages-and-when-to-use-it/

    下載圖示 校內:2021-09-01公開
    校外:2022-09-01公開
    QR CODE