| 研究生: |
游惟翔 Yu, Wei-Xiang |
|---|---|
| 論文名稱: |
電漿離子佈植在鈦合金及碳合金鋼表面產生型態及微結構變化之探討 Plasma ion implantation on Ti-based alloy and carbon steel: study of modification on surface morphologies and microstructures |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 間隙元素 、脈衝負偏壓 、電漿離子佈植 、鈦六鋁四釩 、碳合金鋼 |
| 外文關鍵詞: | negative impulse bias, interstitial elements, Plasma ion implantation, Ti-6Al-4V, carbon alloy |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
離子佈植方法是物理的技術能夠在金屬表面產生一擴散漸進層,其不同於鍍層技術經常會改變原基材的尺寸或大小。其中,電漿離子佈植技術利用低溫氣體電漿做為離子源。基材經施加一固定的脈衝負偏壓,之後,電漿中的離子對目標基材轟擊,在表面可能形成數百奈米的擴散深度的處理層。其中,電漿離子佈植方法可以將氮、碳、氧等間隙元素植入金屬基材中。然而,此方法之電漿離子的種類及所植入離子的深度均受到限制。本研究中以三種碳合金鋼,即304不鏽鋼、M2高速鋼、420J2麻田散鋼、以及Ti-6Al-4V為基材。利用表面分析儀器,如:X光光電子能譜儀、歐傑電子能譜儀、及低掠角X光繞射儀,來探討離子佈植表面結構的變化。對碳合金鋼,使用50% C2H2 and 50% N2而言,由於離子的動能與大小的差異,僅有氮元素可進入基材內,而碳衍生物質則是在表面產生堆疊。舉例而言,在高的偏壓下,如:20 KV時,同時造成表面粗糙度大幅上升,但離子佈植表面的奈米硬度呈下降趨勢。氮元素能進入基材表面形成微裂縫與疊差,可能對原本緻密的結構造成破壞。對Ti-6Al-4V,使用100% N2而言,處理後的試片表面會有TiN鍵結能的發現,但由於在低掠角X光繞射分析結果並未有結晶相之TiN產生,因此推測其形成之TiN為非晶型。其效應使得處理後試片表面變平整,奈米硬度上升,但在耐磨損磨之耗微振磨耗測試方面,因處理試片深度為極表面,故觀測不出顯著之變化。
Ion implantation methods are physical techniques capable to create a diffused layer into a metal surface and are dissimilar to coating techniques, which usually alter the size or the dimension of the substrate. Among them, plasma ion implantation technique utilizes low-pressure gaseous plasma as the source of ionized elements. The substrate is exerted a constant and negative impulse bias; plasma ions thereafter bombard into the target substrate, which may result in a layer of several hundreds nm depth. Plasma ion implantation method is competent to insert interstitial elements such as nitrogen, carbon or oxygen, into a metal. Nevertheless, both the type of plasma ions and the ion-implanted depth are limited by applying this method. In this work, three kinds of carbon alloy, i.e. 304 stainless steel, M2 high speed steel and 420J2 martensite steel, and Ti-6Al-4V were employed. Surface analyses using X-ray Photoelectron Spectroscopy (XPS), Auger Electron Spectroscopy (AES) and Glancing Incidence X-ray Diffraction were utilized to explore the modified structures of the ion-implanted surface. In the case of carbon alloys using 50% C2H2 and 50% N2, only nitrogen elements could enter the substrate, detected by AES, whereas carbon-derivative species were accumulated on the surface, owing to the difference of the kinetic energy and the dimension of the ionized mass. For example, at high bias voltage such as 20 KV, surface roughness significantly increased, simultaneously nanohardness of the ion-implanted surface obviously decreased. The nitrogen elements were capable of entering the substrate surface and forming creaks and stacking faults on it, which might damage the densely packed structure. In the case of Ti-6Al-4V using 100% N2, TiN binding energy, detected by XPS, was found on the ion-implanted surface, whereas no TiN crystalline structure was sought using GIXRD. It is therefore presumable that the formation of TiN was non-crystalline. In addition, this effect was superficial that made the ion-implanted surface smooth and increased its nanohardness, whereas the abrasion resistance of the treated surface to micromotion test was unobvious.
[1] A. Anders “Metal plasma immersion ion implantation and deposition:a review”, Surface and Coatings Technology, Vol. 93, pp158-167, 1997.
[2] R. F. Hochman “Ion implantation”, ASM Metal Handbook Vol. 16 , pp 424,1990.
[3] M. Farley, B. Simonton, in “Ion Implantation Science and Technology”, Ion Implantation Technology Co. Yorktown 1996.
[4] F. Spaepan and D. Turnbull, "Crystalline Process," in Laser Annealing of Semicodncutors, Academic Press, New York, Chap. 2, 1982.
[5] K. B. Winterbon, “Ion Implantation Range and Energy Deposition Distributions, Low Energies”, Plenum Press, New York 1975.
[6] H. L. Liu, S. S. Gearhart, J. H. Booske, “Ultra-Shallow P+/N Junctions Formed by Recoil Implantation”, Journal of Electronic Materials, Vol. 27, No.2, pp 1027, 1998.
[7] S. M. Johns, T. Bell, M. Samandi and G. A. Collins “Wear resistance of plasma immersion ion implanted Ti-6Al-4V”, Surface and Coatings Technology, Vol. 85, pp 7-14, 1996.
[8] J. D. Liao, J. Rieu, B. Forest, Y. Corre, L. Boudonkha and S. Paletto, “Mechanical properties of ion-implanted biomaterial surfaces evaluated by nano-indenter”, Polymer in Medicine and Surgery, pp 105-112, The Institute of Materials in associate with J. Artifical Organs, 1996.
[9] J. D. Liao, J. Rieu, Y. Corre, L-M Rabbe, L. Boudoukha and S. Paletto, “Mechanical and chemical modifications of PE surface by ion implantation” Materials in Clinical Applications, Advances in Science and Technology Vol. 12, pp 141-152, Techna Pub. S.r.i., 1995.(editor P. Vincenzini)
[10] J. D. Liao, “Physico-chemical and mechanical modifications of polyethylene and polypropylene surface by nitrogen-ion implantation, microwave plasma treatment, electron-beam and γ-ray radiations”, Ph. D. Thesis of Ecole Nationale Supérieure des Mines and Institut Nationale Polytechnique de Grenoble, No. TD-108, France, 1994.
[11] 廖峻德、陳文彬、王明誠 “超高分子聚乙烯人工髖臼杯之表面機械性質強化”, 中華醫學工程學刊, Vol. 18, No.2, pp 139-145, 1998.
[12] Y. Itoh, A.Itoh, H. Azuma and T. Hioki, “Improving the tribological properties of Ti–6Al–4V alloy by nitrogen-ion implantation”, Surface and Coatings Technology, Vol. 111, pp 172-176, 1999.
[13] C. Blawert, H. Kalvelage, B.L. Mordike, G.A. Collins, K.T. Short,Y. Jiraskova, O. Schneeweiss, “Nitrogen and carbon expanded austenite produced by PIII” Surface and Coatings Technology, Vol. 136, pp 181-187, 2001.
[14] C. Blawert , B.L. Mordike, “Nitrogen plasma immersion ion implantation for surface treatment and wear protection of austenitic stainless steel X6CrNiTi1810”, Surface and Coatings Technology, Vol. 116-119, pp 352-360, 1999.
[15] C. Blawert , B.L. Mordike, G.A. Collins, B.T. Short, J. Tenjys, “Influence of process parameters on the nitriding of steels by plasma immersion ion implantation”, Surface and Coatings Technology, Vol. 103-104, pp 240-247, 1998.
[16] M. Rinnera, J. Gerlachb and W. Ensinger, “Formation of titanium oxide films on titanium and Ti-6Al-4V by O2-plasma immersion ion implantation” Surface and Coatings Technology, Vol. 132, pp 111-116, 2000.
[17] Y. X. Lenga, P. Yang, J. Y. Chena, H. Sun, J. Wang, G. J. Wang, N. Huanga, X. B. Tiana and P. K. Chua, ”Fabrication of Ti-O/Ti-N duplex coatings on biomedical titanium alloys by metal plasma immersion ion implantation and reactive plasma nitriding/oxidation”, Surface and Coatings Technology, Vol. 138, pp 296-300, 2001.
[18] V. V. Uglov, V. M. Anishchik, A.K. Kuleshov, J. A. Fedotova, N. T. Kvasov, A. L. Danilyuk, R. Guenzel, H. Reuther , E. Richter, “Plasma immersion N and N+C implantation into high-speed tool steel: surface morphology, phase composition and mechanical properties”, Surface and Coatings Technology, Vol. 142-144, pp 406-411, 2001.
[19] F. Berberich, W. Matz, U. Kreissig, E. Richter, N. Schell and W. Moller, “Structural characterisation of hardening of Ti-Al-V alloys after nitridation by plasma immersion ion implantation” Applied Surface Science, Vol. 179, pp 13-19, 2001.
[20] X. B. Tian, L. P. Wang, Q. Y. Zhang1 and P. K. Chu, “Dynamic nitrogen and titanium plasma ion implantation/deposition at different bias voltages” Thin Solid Films, Vol. 390, pp 139-144, 2001.
[21] X. Tian, D. T. K. Kwok, P. K. Chua,., C. Chan, “Nitrogen depth profiles in plasma implanted stainless steel”, Physics Letters, Vol. A 299, pp 577-580, 2002.
[22] X. B. Tian, T. Zhang, R. K. Y. Fu and P. K. Chu, “Influence of bias voltage on the tribological properties of titanium nitride films fabricated by dynamic plasma ion implantation/deposition” Surface and Coatings Technology, Vol. 161, pp 232-236, 2002.
[23] S. B. Qadri, B. Molnar, M. Yousuf and C.A. Carosella, ”X-ray determination of strain in ion implanted GaN”, Nuclear Instrument and Methods in Physics Research B, Vol. 190, pp 878-881, 2002.
[24] J. P. Riviere, P. Meheust, J. P. Villain, C. Templier, M. Cahoreau, G. Abrasonis and L. Pranevicius, ”High current density nitrogen implantation of an austenitic stainless steel”, Surface and Coatings Technology, Vol. 158-159, pp 99-104, 2002.
[25] Y. Hara, T. Yamanishi, K. Azuma, H. Uchida and M. Yatsuzuka, ”Microstructure of Al-alloy surface implanted with high-dose nitrogen”, Surface and Coatings Technology, Vol. 156, pp 166-169, 2002.
[26] Y. X. Leng, N. Huang, P. Yang, J. Y. Chen, H. Sun, J. Wang, G. J. Wan, X. B. Tian, R. K. Y. Fu, L. P. Wang, P. K. Chu, “Structure and properties of biomedical TiO2 Film synthesized by dual plasma deposition”, Surface and Coatings Technology, Vol. 156, pp 259-300, 2002.
[27] S. Mukherjee, P.M. Raole, P. I. John, “Effect of applied pulse voltage on nitrogen plasma immersion ion implantation of AISI 316 austenitic stainless steel”, Surface and Coatings Technology, Vol. 157, pp 111-117, 2002.
[28] T. Takemoto, Effect of alloying elements on mechanical magnetic properties of Cr-Ni austenitic stainless steel at cryogenic temperature, Transaction ISIJ, Vol. 28, pp 965-972,1988.
[29] Z. Yu, X. Xu, L. Wang, J. Qiang, Z. Hei, “Structural characteristics of low-temperature plasma-nitrided layers on AISI 304 stainless steel with an α’-martensite layer”, Surface and Coatings Technology, Vol. 153, pp 125-130, 2002.
[30] L. L. Pranevicius, P. Valatkevicius , V. Valincius , C. Templier , J. P. Riviere , L. Pranevicius, “Nitriding of an austenitic stainless steel in plasma torch at atmospheric pressure”, Surface and Coatings Technology, Vol. 156, pp 219-224, 2002.
[31] W. Ensinger, “Modification of mechanical and chemical surface properties of metals by plasma immersion ion implantation” Surface and Coatings Technology, Vol. 100-101, pp 341-352, 1998.
[32] R. H. Woods, B. K. Lambert, “A performance study of plasma source ion-implanted tools versus high-speed steel tools”, Nuclear Instruments and Methods in Physics Research B Vol. 127-128, pp 1004-1007, 1997.
[33] S. Mandl , E. Richter, R. Gunzel, W. Moller, “Nitrogen plasma immersion ion implantation into high speed steel”, Nuclear Instruments and Methods in Physics Research B Vol. 148, pp 846-850, 1999.
[34] I. Alphonsa, A. Chainani, P.M. Raole, B. Ganguli, P.I. John, “A study of martensitic stainless steel AISI 420 modified using plasma nitriding”, Surface and Coatings Technology, Vol. 150, pp 263-268, 2002.
[35] T. W. Bauer, “Particles and peri-implant bone resorption”, Clinical Orthopaedics & Related Research, Vol. 405, 138-143, 2002.
[36] J. J. Jacobs, K. A. Roebuck, M. Archibeck, N. J. Hallab, T. T. Glant, “Osteolysis: basic science”, Clinical Orthopaedics & Related Research, Vol. 393, pp 71-77, 2001.
[37] B. Mjoberg, “The theory of early loosening of hip prostheses”, Orthopedics, Vol. 20, No. 12, pp 1169-1175, 1997.
[38] H. V. Boenig, “Plasma Science and Technology”, Cornell University Press, 1982.
[39] B. I. Forrest, “Plasmas:laboratory and cosmic”, Van Nostrand, 1996.
[40] B. Chapman , “Glow Discharge Processes-Sputtering and Plasma Etching”, John Wiley and sons, 1980.
[41] A. Grill, “Cold Plasma in Meterials Fabrication”, IEEE Press, 1994.
[42] F. K. Taggart, “Plasma Chemistry in Electrical Discharges”, Amsterdam Press, pp 65, 1967.
[43] S. Qi , M. Xinxin, X. Lifang, “Effect of pulse waveform on plasma sheath expansion in plasma-based ion implantation”, Nuclear Instruments and Methods in Physics Research B, Vol. 170, pp 397-405, 2000.