簡易檢索 / 詳目顯示

研究生: 張勝皓
Chang, Sheng-Hao
論文名稱: 製作上轉換螢光粉披覆之光學調變器於絕緣層覆矽(SOI)基板上進行全光學訊號調變
The Upconversion Phosphors-Coated Optical Modulators Fabricated on Silicon-on-Insulator Substrates for All-Optical Signal Modulation
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 95
中文關鍵詞: SOI基板螢光粉馬赫任德爾光調變器自由載子消散效應單光子吸收
外文關鍵詞: silicon-on-insulator (SOI) substrate, phosphor, Mach-Zehnder interferometer, free-carrier dispersion effect, one-photon absorption
相關次數: 點閱:142下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光波導調變器一直是發展積體光學最重要的元件之一,在本篇論文中,將MZI調變器製作在SOI基板上,並利用980 nm雷射激發螢光粉發出綠光,使MZI調變區其中一支產生相位變化,讓在SOI MZI中傳播的1550 nm波長光訊號在輸出時發生破壞性干涉,因而可以改變輸出的光強度,達到調變的效果。
    在所有調變器的調變機制中,因為矽材料本身的限制,電光效應顯得很微弱,需要加入很大的電場才能使矽折射率改變;而熱光效應雖然也可以改變折射率,但是因為其響應速度慢而變得不實用;因此以矽材料而言最佳的調變機制是自由載子消散效應,本篇論文即以矽材料單光子吸收的方式產生自由載子,並藉此改變折射率乃至相位改變,最終影響MZI的輸出光強度。本篇論文中設計的元件,測得的調變深度為3.6%,消光比為-0.16 dB。
    因為調變效果不佳,因此針對元件進行一些改善,包括螢光粉薄膜以及重新設計實驗架構兩部分。然而新設計的實驗架構量測結果元件並沒有調變的現象,推測原因是因為980 nm雷射激發螢光粉發光,但其發光強度並不足以使矽材料發生折射率改變。因此未來將使用10 W 980 nm雷射激發螢光粉,藉由提高激發光源,螢光粉發光強度也能有所提升;如果調變效果還是不明顯,將使用脈衝綠光雷射直接照射元件調變區,量測輸出光的強度變化情形。

    Up-conversion phosphor coated optical modulator in SOI wafer by utilizing the free carrier dispersion effect is fabricated. From the measured results, the longest emissive length pumped by 980 nm laser is about 4000 m, and the first device structure presents the modulation depth of 3.5% and the extinction ratio of -0.16 dB. Because the efficiency was too low, another way of preparing the phosphor film is thought out using the dip coating. The subsequent characterizations of these dip-coated films include the emissive spectrum and transmission / reflection / absorption measurements. A new device structure is also implemented. However, our second device so far has not demonstrated the modulation effect. The failure is possibly due to an ultralow emissive intensity of light being given off by phosphors, which is not strong enough to realize a noticeable SOI refractive index change.

    中文摘要 I 英文摘要 II 致謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 序論......1 1-1 螢光粉簡介......1 1-2 矽光學簡介......5 1-3 研究動機......13 1-4 論文架構......14 參考資料......15 第二章 理論背景......19 2-1 上轉換螢光粉機制......19 2-2 矽光調變器調變機制......30 2-2-1 波克爾斯效應 (Pockels Effect)......30 2-2-2 克爾效應 (Kerr Effect)......30 2-2-3 夫蘭瑞-凱力新效應 (Franz-Keldysh effect)......32 2-2-4 自由載子消散效應 (Free-carrier dispersion effect) ......33 2-2-5 熱光效應 (Thermo-optic effect)......35 2-3 我所使用的光振幅調變器之工作原理......36 2-3-1 自由載子的產生......36 2-3-2 光振幅調變器之工作原理......38 參考資料......40 第三章 光振幅調變器之製作流程......43 3-1 元件架構......43 3-2 元件製作流程......44 3-2-1 基板清洗......46 3-2-2 黃光微影......46 3-2-3 矽蝕刻......48 3-2-4 氮氧化矽(SiON)沉積......49 3-2-5 黃光微影及氮氧化矽乾蝕刻......49 3-2-6 試片研磨......50 3-2-7 填入螢光粉......51 3-3 螢光粉製作......52 第四章 元件光路量測分析......54 4-1 綠光螢光粉發光頻譜量測......54 4-2 螢光粉發光長度量測......58 4-3 CCD量測......60 4-4 元件量測......62 4-4-1 調變深度(Modulation depth) & 消光比(Extinction ratio)......63 參考資料......66 第五章 改善方式......67 5-1 螢光粉薄膜......67 5-1-1 紅光螢光粉......70 5-1-2 藍光螢光粉......78 5-2 重新設計元件及實驗架構......84 5-2-1 SOI MZI元件模擬......89 參考資料......93 第六章 結論與未來工作......94 6-1 結論......94 6-2 未來工作......95

    第一章
    [1] Hai-Qian Wang, Miroslaw Batentschuk, Andres Osvet, Luigi Pinna, and Christoph J. Brabec, “Rare-earth ion doped up-conversion materials for photovoltaic applications,” Adv. Mater., vol. 23, no. 22-23, pp. 2675-2680, June 17, 2011.
    [2] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Status Solidi A, vol. 202, no. 6, May 2005.
    [3] Yen-Chi Chen, and Teng-Ming Chen, “Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb:R (R=Er, Ho) phosphors,” J. Rare Earth, vol. 29, no. 8, Aug. 2011.
    [4] T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys., vol. 92, no. 7, 2002.
    [5] V. K. Tikhomirov, K. Dreisen, V. D. Rodriguez, P. Gredin, M. Mortier, and V. V. Moshchalkov, “Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles,” Opt. Express, vol. 17, no. 14, July 2009.
    [6] Z. Feng, Y. He, H. Bai, and B. Cao, “Green up-conversion emissions and optical thermometry of Er3+ doped borosilicate glass,” Opt. Eng., vol. 50, no. 4, April 2011.
    [7] Janet Milliez, Alexandra Rapaport, Michael Bass, Arlete Cassanho, and Hans P. Jenssen, “High-brightness white-light source based on up-conversion phosphors,” J. Disp. Technol., vol. 2, no. 3, Sept. 2006.
    [8] A. Bednarkiewicz, D. Wawrzynczyk, M. Nyk, and M. Samoc, “Tuning red-green-white up-conversion color in nano NaYF4:Er/Yb phosphor,” J. Rare Earth, vol. 29, no. 12, Dec. 2011.
    [9] Jung-Hyun Cho, Michael Bass, Arlete Cassanho, Hans P. Jenssen, Sabine Freisem, and Dennis G. Deppe, “Properties of Up Conversion Phosphors Necessary for Small Size Emissive Displays,” J. Disp. Technol., vol. 7, no. 2, February 2011.
    [10] J. Milliez, A. Rapaport, F. Szipcs, H. P. Jenssen, M. Bass, and A. Cassanho, “Up-conversion efficiencies of potential candidates for photonic displays,” SID Symp. Dig., vol. 34, no. 1, pp. 1230-1233, 2003 .
    [11] T. Sandrock, H. Scheife, E. Heumann, and G. Huber, “High-power continuous-wave upconversion fiber laser at room temperature,” Opt. Lett., vol. 22, no. 11, pp. 808-810, 1997.
    [12] Ortwin Hellmig, Stefan Salewski, Arnold Stark, Jörg Schwenke, Peter E. Toschek, Klaus Sengstock, and Valery M. Baev, “Multicolor diode-pumped upconversion fiber laser,” Opt. Lett., vol. 35, no. 13, pp. 2263-2265, 2010.
    [13] Hanno Scheife, Gunter Huber, Ernst Heumann, Sebastian Bar, and Eugen Osiac, “Advanced in up-conversion lasers based on Er3+ and Pr3+,” Opt. Mater., vol. 26, no. 4, pp. 365-374, 2004.
    [14] Paul Corestjens, Michel Zuiderwijk, Antoinette Brink, Shang Li, Hans Feindt, R. Sam Niedbala, and Hans Tanke, “Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid suquences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection,” Clin. Chem., vol. 47, no. 10, pp. 1885-1893, October 2001.
    [15] Pau. L. A. M. Corestjens, Lisette van Lieshout, Michel Zuiderwijk, Dieuwke Kornelis, Hans J. Tanke, Andre M. Deelder, and Govert J. van Dam, “Up-converting phosphor technology-based lateral flow assay for detection of schistosoma circulating anodic antigen in serum,” J. Clin. Microbiol., vol. 46, no. 1, pp. 171-176, January 2008.
    [16] Liping Wei, Samer Doughan, Yi Han, Matthew V. DaCosta, Ulrich J. Krull, and Derek Ho, “The intersection of CMOS microsystems and upconversion nanoparticles for luminescence bioimaging and bioassays,” Sensors, vol. 14, pp. 16829-16855, 2014.
    [17] Yuming Yang, Upconversion nanophosphors for use in bioimaging, therapy, drug delivery and bioassays, Springer, 2014.
    [18] Debasis Bera, Sergey Maslov, Lei Qian, Jae Soo Yoo, and Paul H. Holloway, “Optimization of the yellow phosphor concentration and layer thickness for down-conversion of blue to white light,” J. Disp. Technol., vol. 6, no. 12, Dec. 2010.
    [19] Dong-Chuan Chen, and Quan-Lin Liu, “Optimization of output and phosphor consumption for phosphor-converted white light-emitting diodes,” Rare Metals, vol. 33, no. 2, 2014.
    [20] Chengguo Ming, Feng Song, Chengren Li, Yin Yu, Gong Zhang, Hua Yu, Tongqing Sun, and Jianguo Tian, “Highly efficient downconversion white light in Tm3+/Tb3+/Mn2+ tridoped P2O5-Li2O-Sb2O3 glass,” Opt. Lett., vol. 36, no. 12, pp. 2242-2244, 2011.
    [21] B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energ. Mat. Sol. C., vol. 90, no. 9, May 2006.
    [22] T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys., vol. 92, no. 3, 2002
    [23] Efthymios Klampaftis, David Ross, Keith R. McIntosh, and Bryce S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,” Sol. Energ. Mat. Sol. C., vol. 93, 2009.
    [24] C.P. Thomas, A. B. Wedding, S. O. Martin, “Theoretical enhancement of solar cell efficiency by the application of an ideal ‘down-shifting’ thin film,” Sol. Energ. Mat. Sol. C., vol. 98, pp. 455-464, 2012.
    [25] R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Elect., vol. 23, issue 1, Jan. 1987.
    [26] R. A. Soref and J. Lorenzo, “All-silicon active and passive guided-wave components for l=1.3 and 1.6 mm,” IEEE J. Quantum Elect., vol. QE-22, no. 6, Jun. 1986.
    [27] R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of Electro-Optical switching in silicon,” in Proc. SPIE Integr. Opt. Circuit Eng., vol. 704, 1986.
    [28] R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, no. 12, Dec. 1993.
    [29] P. Hall and P. Kaiser, “Spectral losses of unclad fibers made from high-grade vitreous silica,” Appl. Phys. Lett., vol. 23, pp. 45-46, Apr. 1973.
    [30] P. Dainesi, A. Küng, M. Chabloz, A. Lagos, Ph. Flückiger, A. Ionescu, P. Fazan, M. Declerq, Ph. Renaud, and Ph. Robert, “CMOS Compatible Fully Integrated Mach–Zehnder Interferometer in SOI Technology,” IEEE Photonic. Tech. L., vol. 12, no. 6, June 2000.
    [31] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature, vol. 427, pp. 615-618, 2004.
    [32] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keill, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express, vol. 13, pp. 3129-3135, 2005.
    [33] C. A. Barrios, V. R. Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol., vol. 21, no. 4, Apr. 2003.
    [34] V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature, vol. 431, Oct. 2004.
    [35] Qianfan Xu, Bradley Schmidt, Sameer Pradhan, and Michal Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325-327, 2005.
    [36] G. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “All-silicon thermo-optic micro-modulator,” Solid State Device Research Conference, Sept. 1995.
    [37] S. Stepanov and S. Ruschin, “Modulation of light by light in silicon-on-insulator waveguides,” Appl. Phys. Lett., vol. 83, no. 25, Dec. 2003.
    [38] S. Stepanov and S. Ruschin, “Phase and amplitude modulation of light by light in silicon-on-insulator waveguides,” Electron. Lett., vol. 41, no. 8, Apr. 2005.

    第二章
    [1] D. R. Gamelin, H. U. Gudel, “Upconversion processes in transition metal and rare earth metal systems,” Transition Metal and Rare Earth Compounds, vol. 214, pp. 1-56, 2001.
    [2] J. F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K. W. Kramer, C. Reinhard, and H. U. Gudel, “Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion,” Opt. Mater., vol. 27, no. 6, March 2005.
    [3] Ashiq Hussain Khalid and Konstantinos Kontis, “Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications,” Sensors, pp. 5673-5744, 2008.
    [4] Satoshi Watanabe, Hiroshi Hyodo, Hirohisa Taguchi, Kohei Soga, Yoshifumi Takanashi, and Mutsuyoshi Matsumoto, “Calcination- and Etching-Free Photolithography of Inorganic Phosphor Films Consisting of Rare Earth Ion Doped Nanoparticles on Plastic Sheets,” Adv. Funct. Mater., vol. 21, issue 22, Nov. 2011.
    [5] Ralph H. Page, Kathleen I. Schaffers, Phillip A. Waide, John B. Tassano, Stephen A. Payne, William F. Krupke, and William K. Bischel, ”Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium,” J. Opt. Soc. Am. B, vol. 15, no. 3, March 1998.
    [6] J. F. Suyver, , J. Grimm, K.W. Kramer, and H.U. Gudel, “Highly efficient near-infrared to visible up-conversion process in NaYF4: Er3+, Yb3+,” J. Lumin., vol. 114, no. 1, pp. 53-59, July 2005.
    [7] Christof Strohhofer and Albert Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys., vol. 90, no. 9, 2001.
    [8] A. Shalav, B. S. Richards, T. Trupke, K. W. Krämer and H. U. Güdel, “Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response,” Appl. Phys. Lett., vol. 92, 2005.
    [9] Xiangfu Wang, Siguo Xiao, Xiaoliang Yang, and J. W. Ding, “Highly efficient cooperative up-conversion of Yb3+ in NaYF4,” Journal of Materials Science, Vol. 43, Issue 4, pp. 1354-1356, February, 2008.
    [10] A Bednarkiewicz and W Strek, “Laser-induced hot emission in Nd3+/Yb3+:YAG nanocrystallite ceramics,” J. Phys. D.: Appl. Phys., vol. 35, no. 20, pp. 2503-2507, 2002.
    [11] M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B, vol. 61, no. 5, 2000.
    [12] Meisong Liao, Guanshi Qin, Xin Yan, Mark Hughes, Takenobu Suzuki, and Yasutake Ohishi, “Evaluating upconversion materials developed to improve the efficiency of solar cells: comment,” J. Opt. Soc. Am. B, vol. 27, no. 7, July 2010.
    [13] M. Pollnau, D. R. Gamelin, S. R. Luthi, and H. U. Gudel, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B, no. 61, pp. 3337-3346, 2000.
    [14] Davide Vione, Valter Maurino, Claudio Minero, Ezio Pelizzetti, Mark A. J. Harrison, Romeo-Iulian Olariuc, and Cecilia Arsenec, “Photochemical reactions in the tropospheric aqueous phase and on particulate matter,” Chem. Soc. Rev., vol. 35, no. 5, pp. 441-453, 2006.
    [15] T. Liu and J. P. Sullivan, Pressure and Tempreature Sensitive Paints, Springer, 2005.
    [16] James H Bell, Edward T Schairer, Lawrence A Hand, and Rabindra D Mehta, “Surface pressure measurements using luminescent coatings,” Annual Review of Fluid Mechanics, vol. 33, pp. 155-206, 2001.
    [17] A. L. Heyes, Thermographic Phosphor thermometry for gas turbines” In Advanced Measurement techniques for aeroengines and stationary gas turbines, Von Karmen Institute for fluid dynamics, 2004.
    [18] R. A. Soref, R. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Elect., vol.23, no. 1, pp. 123-129, 1987.
    [19] G. Cocorullo and I. Rendina, “Thermo-optical modulation at 1.5 mm in silicon etalon,” Electron. Lett., Vol.28, pp. 83-85, 1992.
    [20] S. Stepanov and S. Ruschin, “Modulation of light by light in silicon-on-insulator waveguides”, Appl. Phys. Lett., Vol. 83, No. 25, pp.5151-5153, 2003.
    [21] Tom Baehr-Jones, Michael Hochberg, and Axel Scherer, “All-Optical Modulation in a Silicon WaveguideBased on a Single-Photon Process”, IEEE J. Sel. Top. Quant., Vol. 14, No. 5, pp. 1335-1342, 2008.
    [22] Vilson R. Almeida, Carlos A. Barrios, Roberto R. Panepucci and Michal Lipson, “All-optical control of light on a silicon chip”, Nature, Vol. 431, No. 28, pp. 1081-1084, 2004.
    [23] S. O. Kasap, “Optoelectronics and Photonics: Principles and Practices,” Prentice Hall, New Jersey, 2001, ch. 7.
    [24] G. T. Read, and A. P. Knights, “Silicon Photonics: an introduction,” John Wiley & Sons, New York, 2004.

    第四章
    [1] 王筱姍、陳韋廷、劉如熹,發光二極體用之螢光粉熱特性探討,光連 : 光電產業及技術情報,no. 105,2013。

    第五章
    [1] http://www.newport.com/Fiber-Optic-Collimators/835618/1033/info.aspx#tab_Specifications
    [2] http://www.newport.com/Beam-Shaping-with-Cylindrical-Lenses/144888/1033/content.aspx

    下載圖示 校內:立即公開
    校外:2016-11-06公開
    QR CODE