| 研究生: |
曹鈞喆 Tsao, Chun-Che |
|---|---|
| 論文名稱: |
磁電顆粒複合材料之顆粒定向及非定向本構律模擬 Constitutive modeling of magnetoelectric oriented and non-oriented particle composites |
| 指導教授: |
林建宏
Lin, Chien-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 微觀力學模型 、磁電效應 、定向及非定向顆粒 、離散能量平均本構模型 |
| 外文關鍵詞: | Micromechanics model, magnetoelectric effect, oriented and non-oriented particle, discrete energy average constitutive model |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項研究中,考慮了磁致伸縮-壓電顆粒複合材料的有效磁電效應,包括定向和非定向的情況。本研究提出了一個著名的微觀力學模型,Mori-Tanaka模型,用於分析磁電複合材料。由於單相磁電材料如Cr2O3對於工程領域上的應用來說太小,因此近期的研究著重於將磁致伸縮化合物嵌入壓電基質中形成兩相複合材料,旨在增強磁電效應。當複合材料受到外部磁場作用時,磁電複合材料中的磁致伸縮材料的應變導致對壓電相的應變,從而引起電極化。然而,由於壓電基質中的磁致伸縮顆粒可能不會在同一方向上排列,因此採用離散能量平均模型,能夠描述任意晶體方向的單相磁致伸縮材料,以解決基材中的顆粒方向問題。這個獨特的本構模型在複合材料受到加載或磁場作用時,能夠準確捕捉非線性行為並以封閉形式的方程式來表示。與現有文獻相比,該模型可以直接在本構層面考慮顆粒方向,從而得到方向無關的剛度矩陣,從而提高了計算效率。微觀力學的預測將與現有文獻中的實驗數據進行比較,以驗證數值結果的可行性,然後將呈現有關體積分率、預應力和細長比影響的參數研究。
In this research, the effective magnetoelectric effect of magnetostrictive-piezoelectric particle composites, both oriented and non-oriented, is considered. A well-known micromechanics model, Mori-Tanaka, is proposed for the analysis of magnetoelectric composites. Since single-phase magnetoelectric materials such as Cr2O3 are too small for practical engineering applications, recent research has focused on embedding magnetostrictive compounds into piezoelectric matrix to form two-phase composites, aiming to enhance the magnetoelectric effect. The magnetoelectric effect in the two-phase composite is caused from the strain of the magnetostriction material when the composite is subjected to the external magnetic field, strain transmits to piezoelectric phase led to induces electrical polarization. However, because magnetostrictive particles in the piezoelectric matrix may not align in the same direction, the discrete anergy averaged model, capable of describing monolithic magnetostrictive materials with arbitrary crystal orientations, is employed to address particle orientation in the matrix. This distinctive constitutive model accurately captures the nonlinear behavior in closed-form equations when the composite is subjected to loading or a magnetic field. In comparison with existing studies, this model can directly consider particles orientation at the constitutive level, resulting in orientation-independent stiffness and thus improving computational efficiency. The micromechanics prediction will comparison with experiment data to verify the feasibility of the numerical results. Then, the parameter studies about the influence of the volume fraction, prestress and aspect ratio will be presented.
1. Brito-Pereira, R., et al. (2023). "Polymer-based magnetoelectric scaffolds for wireless bone repair: The fillers’ effect on extracellular microenvironments." Composites Science and Technology 243: 97-102.
2. Astrov, D. N. (1960). "The magnetoelectric effect in antiferromagnetics." Soviet Physics JEPT 11.
3. Tomashpol’skii, Y. Y. and Y. N. Venevtsev (1964). "Zhda nov, GS, Concerning the Relationship between Special Dielectric and Magnetic Properties of Magnetoelectric Materials." Pis’ ma Zh. Eksp. Teor. Fiz 46(5): 1921-1923.
4. Kizhaev, S., et al. (1966). “Magnetic Properties of YMnO3.” Soviet Physics Solid State 8: 215.
5. A. M. J. G. Van Run, D. R. Terrell., J. H. Scholing (1974). "An in situ grown eutectic magnetoelectric composite material." Journal of Material Science 9: 1710-1714.
6. Kiyotake Mori, M. W. (2002). "Magnetoelectric coupling in Terfenol-D /polyvinylidenedifluoride composites " Appl. Phys. Lett. 81: 100-101.
7. Nan, C. W. (1994). "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases." Physical Review B 50(9): 6082-6088.
8. Cai, N., et al. (2003). "Dielectric, ferroelectric, magnetic, and magnetoelectric properties of multiferroic laminated composites." Physical Review B 68(22).
9. Li, J. Y., M. L. D. (1998). "Micromechanics of Magnetoelectric Composite Materials: Average Fields and Effective Behavior." Journal of Intelligent Material System and Strructures 9.
10. Lin, C. H. and Lin, Y. Z. (2021). "Nonlinear magnetoelectric coupling in magnetostrictive-piezoelectric composites." Composite Structures 276.
11. Lo, C. Y., et al. (2006). "Large Magnetostriction in Epoxy-Bonded Terfenol-D Continuous-Fiber Composite With [112] Crystallographic Orientation." IEEE Transactions on Magnetics 42(10): 3111-3113.
12. Brito-Pereira, R., et al. (2017). "Magnetoelectric response on Terfenol-D/ P(VDF-TrFE) two-phase composites." Composites Part B: Engineering 120: 97-102.
13. Chen, X., et al. (2024). "Correlation between meso-structures and magnetoelectric properties in 0-3 magnetoelectric composites." International Journal of Mechanical Sciences 262.
14. Sandlund, L., et al. (1994). "Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D." Journal of Applied Physics 75(10): 5656-5658.
15. Geoffrey P. McKnight and G. P. Carman (2002). "[112] Oriented Terfenol-D Composites." Materials Transactions Vol. 43: 1008-1014.
16. Omelyanchik, A., et al. (2021). "Boosting Magnetoelectric Effect in Polymer-Based Nanocomposites." Nanomaterials (Basel) 11(5).
17. Srinivas, S. and J. Y. Li (2005). "The effective magnetoelectric coefficients of polycrystalline multiferroic composites." Acta Materialia 53(15): 4135-4142.
18. Deng, Z. (2017). "Explicit and efficient discrete energy-averaged model for Terfenol-D." Journal of Applied Physics 122(4).
19. Lin, C. H., et al. (2023). "Constitutive Modeling of Oriented and Non-oriented Magnetostrictive Particulate Composites." Compos Struct 311.
20. The Institute of Electrical and Electronics Engineers: IEEE Standard on Piezoelectricity. IEEE, Inc., New York (1987).
21. Chakrabarti, S. and M. J. Dapino (2010). "A dynamic model for a displacement amplified magnetostrictive driver for active mounts." Smart Materials and Structures 19(5).
22. J. J. Scheidler. (2015). "Static and Dynamic Delta E Effect in Magnetostrictive Materials with Application to Electrically-Tunable Vibration Control Devices." The Ohio State University.
23. S. Chakrabarti. (2011). " Modeling of 3D Magnetostrictive Systems with Application to Galfenol and Terfenol-D Transducers" The Ohio State University.
24. Mori-Tanaka: Mori,T. and K. Tanaka (1973)."Average stress in matrix and average elastic energy of materials with misfitting inclusions." Acta metallurgica 21(5): 571-574.
25. Eshelby, J. D. (1957)."The determination of the elastic field of an ellipsoidal inclusion, and related problems." Proceedings of the royal society of London. Series A. Mathemetical and physical sciences 241(1226): 376-396.
26. Hill, R. (1965). "A self-consistent mechanics of composite materials." Journal of the Mechanics and Physics of Solids 13(4): 213-222.
27. Solvay. (2019). "Solvene® 300 EAP Electroactive Polymer", Technical Data Sheet.
28. Liu, Z. H., et al. (2013). "Piezoelectric properties of PVDF/MWCNT nanofiber using near-field electrospinning." Sensors and Actuators A: Physical 193: 13-24.
29. Satish, M., et al. (2023). "Effect of High-Anisotropic Co(2+) Substitution for Ni(2+) on the Structural, Magnetic, and Magnetostrictive Properties of NiFe(2)O(4): Implications for Sensor Applications." ACS Appl Mater Interfaces 15(12): 15691-15706.
30. Alvandi-Tabrizi, Y. and J. Schwartz (2018). "Micromagnetic analysis of crystallographic texturing and substrate-induced strain effects in NiFe2O4 and CoFe2O4 thin films." Acta Materialia 149: 193-205.
31. Zhang, W., et al. (2015). "Heterointerface design and strain tuning in epitaxial BiFeO3:CoFe2O4 nanocomposite films." Applied Physics Letters 107(21).
32. Foerster, M., et al. (2012). "The Poisson Ratio in CoFe2O4 Spinel Thin Films." Advanced Functional Materials 22(20): 4344-4351.
校內:2029-08-01公開