簡易檢索 / 詳目顯示

研究生: 劉沿易
Liu, Yen-Yi
論文名稱: 依經驗法則產生整廠開俥步驟
Generation of Plant Startup Procedures with Heuristic Rules
指導教授: 張珏庭
Chang, Chuei-Tin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 227
中文關鍵詞: 甲苯加氫脫烷化程序操作步驟順序功能圖動態模擬
外文關鍵詞: HDA process, Operating procedure, Sequential function chart, Dynamic simulation
相關次數: 點閱:63下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進展,化學製程呈現多樣化及複雜化,程序設計自動化成為未來不可避免的趨勢,但目前化工廠開俥的標準操作步驟(SOP)仍然大多是人工方式制定出來的。因此,我們利用過往的開俥經驗,透過軟體模擬的幫助,可以了解每個操作步驟對於製程上的影響,同時也可以藉由模擬針對不同目的去改善這些操作步驟,並事先掌握開俥過程中可能會遇到的困難,做出正確的應對避免發生危險。
    本研究根據經驗法則建立甲苯加氫脫烷化(HDA)程序開俥步驟。具體詳細的工作有:(1)將HDA整廠分割成單元系統;(2)將單元系統初始化後根據經驗法則建立單元系統操作步驟;(3)將單元系統操作步驟整理成順序功能圖(SFC),利用Aspen Plus Dynamics○R進行動態模擬驗證,評估步驟的可行性,進行經濟分析,找出最佳操作步驟;(4)接著將單元跟單元之間的步驟銜接並做修正,以製造出新的操作步驟;(5)最後成功合成HDA整廠開俥步驟,將其整理成順序功能圖(SFC)再利用Aspen Plus Dynamics○R動態模擬驗證步驟的可行性。

    關鍵字:甲苯加氫脫烷化程序、操作步驟、順序功能圖、動態模擬

    As the modern chemical processes are becoming more diversified and complicated with the recent advances in science and technology, process design automation is now considered as an inevitable trend in the future. However, the standard operating procedure (SOP) of plant startup is still generated manually in current days. Previous single-unit operation experiences have adopted in this work to aid generation of the feasible startup procedure of the whole plant. Since it is possible to predict the impact of each operation step with the help of software simulation, these procedures can be improved accordingly so as to achieve the specific operational goal.
    In this study, the hydrodealkylation (HDA) process is used as benchmark example for generating plant startup procedure with heuristic rules. The required synthesis tasks include: (1) Dividing the HDA plant into the unit systems; (2) Initializing each unit system and establishing its startup procedure according to the heuristic rules; (3) Summarizing every unit procedure with a sequential function chart (SFC). This SFCs should be verified with Aspen Plus Dynamics○R; (4) Connecting the operating procedures of consecutive units, making corrections if needed and creating the combined procedure; (5) Synthesizing a complete HDA plant startup procedure and SFC; (6) Verifying the plant startup procedure with Aspen Plus Dynamics○R.

    Keywords: HDA process; Operating procedure; Sequential function chart; Dynamic simulation.

    摘要II EXTENDED ABSTRACTIII 致謝XVII 目錄XVIII 表目錄XXII 圖目錄XXIV 第1章 緒論1 1.1 研究動機1 1.2 文獻回顧1 1.3 研究目的4 1.4 章節組織4 第2章 單元開俥步驟之經驗法則5 2.1 蒸餾塔之開俥步驟5 2.1.1 系統描述5 2.1.2 轉檔設定9 2.1.3 合成操作步驟及結果討論12 2.1.3.1 操作步驟的詳細說明13 2.1.3.2 順序功能圖及模擬驗證16 2.1.3.3 結果討論46 2.2 驟餾罐之開俥步驟51 2.2.1 系統描述51 2.2.2 轉檔設定53 2.2.3 合成操作步驟及結果討論55 2.2.3.1 操作步驟的詳細說明55 2.2.3.2 順序功能圖及模擬驗證57 2.2.3.3 結果討論71 2.3 反應器之開俥步驟73 2.3.1 系統描述73 2.3.2 轉檔設定75 2.3.3 合成操作步驟及結果討論79 2.3.3.1 操作步驟的詳細說明79 2.3.3.2 順序功能圖及模擬驗證79 2.3.3.3 結果討論80 第3章 單元銜接作法之開俥步驟81 3.1 STABILISER塔(C1)和PRODUCT塔(C2)串聯之開俥步驟81 3.1.1 Product塔(C2)之開俥步驟81 3.1.1.1 轉檔設定83 3.1.1.2 合成操作步驟及結果討論84 3.1.1.2.1 操作步驟的詳細說明84 3.1.1.2.2 順序功能圖及模擬驗證87 3.1.1.2.3 結果討論101 3.1.2 銜接單元系統的作法102 3.1.2.1 作法1. 等待前面蒸餾塔開俥完畢之後再開俥:102 3.1.2.2 作法2. 與前面蒸餾塔同時執行開俥:109 3.1.2.3 作法1和作法2之比較114 3.1.3 Stabiliser塔(C1)與Product塔(C2)之作法2開俥結果比較及討論114 3.2 STABILISER塔、PRODUCT塔及RECYCLE塔串聯之開俥步驟129 3.2.1 系統描述129 3.2.2 轉檔設定131 3.2.3 合成操作步驟及結果討論133 3.2.3.1 操作步驟的詳細說明133 3.2.3.2 順序功能圖及模擬驗證134 3.2.3.3 結果討論153 第4章 驟餾罐和蒸餾塔序列之開俥步驟156 4.1 系統描述156 4.2 轉檔設定159 4.3 合成操作步驟160 4.3.1 操作步驟的詳細說明160 4.3.2 順序功能圖及模擬驗證163 第5章 反應器、驟餾罐和蒸餾塔序列之開俥步驟171 5.1 系統描述171 5.2 轉檔設定174 5.3 合成操作步驟175 5.3.1 操作步驟的詳細說明175 5.3.2 順序功能圖及模擬驗證178 第6章 整廠開俥步驟190 6.1 系統描述190 6.2 轉檔設定196 6.3 合成操作步驟197 6.3.1 操作步驟的詳細說明197 6.3.2 順序功能圖及模擬驗證201 第7章 結論和未來展望209 7.1 研究結論209 7.2 未來展望209 參考文獻211 附錄A215 附錄B218

    Aylett, R., Petley, G., Chung, P., Soutter, J., & Rushton, A. (1997). Planning and chemical plant operating procedure synthesis: a case study. European Conference on Planning, (pp. 39-51). Springer, Berlin, Heidelberg.

    Chen, T. Y., & Chang, C. T. (2019). Design approach to synthesize, validate, and evaluate operating procedures based on untimed automata and dynamic simulation. Industrial & Engineering Chemistry Research, 58(19), 8172-8183.

    de Araujo, A. C. B., Govatsmark, M., & Skogestad, S. (2007). Application of plantwide control to the HDA process. I-Steady-state optimization and self-optimizing control. Control Engineering Practice, 15(10), 1222-1237.

    de Araujo, A. C. B., Hori, E. S., & Skogestad, S. (2007). Application of plantwide control to the HDA process. II-Regulatory control. Industrial & Engineering Chemistry Research, 46(15), 5159-5174.

    Dimian, A. C., Bildea, C. S., Kiss, A. A. (2014). Chapter 21 - Case Studies. Computer Aided Chemical Engineering, 35, 789-830.

    Fusillo, R. H., & Powers, G. J. (1987). A synthesis method for chemical plant operating procedures. Computers & Chemical Engineering, 11(4), 369-382.

    Fusillo, R. H., & Powers, G. J. (1988). Operating procedure synthesis using local models and distributed goals. Computers & Chemical Engineering, 12(9-10), 1023-1034.

    Ferrarini, L., Piroddi, L. (2003). Modular design and implementation of a logic control system for a batch process. Computers & Chemical Engineering, 27(7), 983-996.

    Kim, J., & Moon, I. (2000). Synthesis of safe operating procedure for multi-purpose batch processes using SMV. Computers & Chemical Engineering, 24(2-7), 385-392.

    Kim, J., & Moon, I. (2010). Model checking for automatic verification of control logics in chemical processes. Industrial & Engineering Chemistry Research, 50(2), 905-915.

    Lai, J. W., Chou, H. H., & Chang, C. T. (2006). Petri‐net based integer programs for synthesizing optimal material‐transfer procedures in pipeline networks. Journal of the Chinese Institute of Engineers, 29(2), 337-346.

    Lee, Y. H., Chang, C. T., Wong, D. S. H., & Jang, S. S. (2011). Petri-net based scheduling strategy for semiconductor manufacturing processes. Chemical Engineering Research and Design, 89(3), 291-300.

    Li, J. H., Chang, C. T., & Jiang, D. (2014). Systematic generation of cyclic operating procedures based on timed automata. Chemical Engineering Research and Design, 92(1), 139-155.

    O’Shima, E. (1978). Safety supervision of valve operation. Journal of Chemical Engineering of Japan, 11(5), 390-395.

    Rivas, J. R., & Rude, D. F. (1974). Synthesis of failure-safe operation. AIChE Journal, 20(2), 320-325.
    Uthgenannt, J. A. (1996). Path and equipment allocation for multiple, concurrent process on networked process plant units. Computers & Chemical Engineering, 20(9), 1081-1087.

    Wang, Y. F., Chou, H. H., & Chang, C. T. (2005). Generation of batch operating procedures for multiple material-transfer tasks with petri nets. Computers & Chemical Engineering, 29(8), 1822-1836.

    Yang, Y. H. A perti-net based optimization strategy for generating the batch operation procedures. Master. Thesis, Cheng Kung University, 2008.

    Yeh, M. L., & Chang, C. T. (2012). An automata based method for online synthesis of emergency response procedures in batch processes. Computers & Chemical Engineering, 38, 151-170.

    Yeh, C. Y. (2020). Case Studies of Generating Operating Procedures Based on Timed Automata. (Master’s thesis). National Cheng Kung University, Tainan, Taiwan.
    Zhang, C. R., Yeh, C. Y., & Chang, C. T. (2020). Synthesis, Validation, and Evaluation of Operating Procedures Based on Timed Automata and Dynamic Simulation. Industrial & Engineering Chemistry Research, 59, 8769-8782.

    陳錫仁(2018)。程序設計與Aspen Plus。化工,65(1),79-90。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE