簡易檢索 / 詳目顯示

研究生: 林保忠
Lin, Pao-Chung
論文名稱: 氮氧化銦鎵光觸媒分解水製氫之研究
Indium Gallium Oxynitride Photocatalysts for H2 Generation from Water-Splitting
指導教授: 鄧熙聖
Teng, Hsi-sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 分解水氮氧化銦鎵光觸媒
外文關鍵詞: Photocatalyst, InxGa1-xO1-yNy, Water-splitting
相關次數: 點閱:81下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直接利用光觸媒分解水產氫,是近年來重要的發展應用之ㄧ。本研究利用水熱法與鍛燒法兩種方式製備銦與鎵混合的前驅物,並將前驅物在700-900℃的氨氣下氮化15小時以合成氮氧化銦鎵(InxGa1-xO1-yNy)光觸媒。發現水熱合成的前驅物因為有較佳的結晶性,所以氮化成的氮氧化銦鎵光觸媒具有較均勻且較少缺陷的特性,研究結果發現,不論在何種氮化溫度下,由水熱合成的前驅物製備的觸媒,在紫外光的照射下,皆具有較優異的分解水特性。
    另外,改變氮化溫度合成氮氧化銦鎵(InxGa1-xO1-yNy)光觸媒,發現氮化800℃後,氮/氧比例會增加,銦含量則有減少的現象,造成觸媒能隙變大,導帶與價帶位置皆改變及電子傳遞速率下降的特性。研究結果發現,在較低溫700℃氮化有助於讓觸媒含有較多的銦,使其有較佳有吸光效率與高載子濃度等光電特性,所以有較佳的分解水產氫活性。

    Direct water splitting using a photocatalyst with sunlight is an attractive means of hydrogen production from the viewpoint of large-scale application. The research concerns the preparation of In and Ga mixed precursor via the hydrothermal method and sintering. The synthesis of InxGa1-xO1-yNy photocatalysts were prepared by calicining the precursor under ammonia atmosphere at the temperature ranging from 700 to 900℃ for 15 hours. We discovered the precusor prepared by hydrothermal method had better crystallinity. Therefore, the photocatalyst prepared from this precursor had better uniformity and less defects. In addition, the photocatalyst prepred by the precusor via hydrothermal method had excellent photocatalytic activity for H2 evolution under UV light irradiation.
    However, when nitridation temperature was higher than 800℃, the ratio of N/O increased and the content of Indium would decreased. This result made the band gap of the catalyst increase, conduction band and valence band position change, and the electron mobility decrease. This revealed lower temperature at 700℃ would increase the content of Indium. It could also improved the photoelectronic properties such as the light-absorption efficiency and high carrier concentration. As a result, it exhibited better photocatalytic activity for H2 evolution.

    中文摘要 I Abstract II 誌謝 III 本文目錄 IV 圖目錄 VII 表目錄 XI 本文目錄 第一章 緒論 1-1 前言 1 1-2 Honda-Fujishima effect 2 1-3 光觸媒原理 3 1-3-1 光觸媒的催化原理 3 1-3-2 光分解水的原理 4 1-3-3 光觸媒分解水反應程序 6 1-4 犧牲試劑工作原理 8 1-5 光觸媒分解水裝置 9 第二章 文獻回顧 11 2-1 可見光分解水觸媒的發展 11 2-2 共觸媒的負載與功用 14 2-3 合成方法簡述 17 2-3-1 導論 17 2-3-2 固相反應法 18 2-3-3 水熱合成法 19 2-4 研究動機 21 2-4-1 氮氧化物光觸媒 21 2-4-2 氮化銦鎵(InGaN) 21 2-4-3 氮氧化銦鎵(InGaON)光觸媒 22 第三章 實驗方法與儀器原理介紹 25 3-1 藥品、材料與儀器設備 25 3-1-1 藥品與材料 25 3-1-2 儀器與實驗設備 26 3-2 光觸媒製備 27 3-2-1 氮氧化銦鎵(InGaON)之製備 27 3-2-2 氮氧化鎵(GaON)之製備 27 3-2-3 共觸媒之製備 28 3-3 光觸媒反應裝置與分析 31 3-3-1 懸浮式光照反應器 31 3-3-2 光源強度之測定 34 3-3-3 光源頻譜之掃描 36 3-4 分析儀器原理簡介 40 3-4-1 X光繞射分析 40 3-4-2 紫外-可見光分光光度計 42 3-4-3 掃瞄電子顯微鏡 43 3-4-4 物理吸附分析 45 3-4-5 氣相層析儀 47 3-4-6 X光吸收光譜 49 第四章 結果與討論 50 4-1 X光繞射(XRD)圖譜分析 50 4-1-1 前驅物X光繞射(XRD)圖譜分析 50 4-1-2 觸媒X光繞射(XRD)圖譜分析 53 4-2 紫外光-可見光(UV-Vis)吸收圖譜分析 57 4-3 X光光電子能譜(XPS)分析 61 4-4 物理吸附及比表面積(BET)分析 65 4-5 掃描式電子顯微鏡(SEM)表面分析 67 4-6 光觸媒活性探討與分析 71 4-6-1 光觸媒反應活性測試 71 4-6-2 光觸媒反應活性之探討 74 第五章 結論與建議 77 5-1 結論 77 5-2 未來建議 77 參考文獻 78 自述 89

    1. 張立群譯, “光清淨革命-活躍的二氧化鈦光觸媒”, 協志工業叢書印行, 2000

    2. 藤嶋昭, 本多健一, 菊池真一, “工業化學”, 1969, 72, 108.

    3. A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 1972, 238, 37.

    4. A. Kudo, H. Kato, I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chem. Lett., 2004, 33, 1534.

    5. A. Kudo, “Photocatalyst materials for water splitting”, Catal. Surv. Asia, 2003, 31, 7.

    6. A. Mills, S. L. Hnute, “An overview of semiconductor photocatalysis”, J. Photochem. Photobiol. A:Chem., 1997, 108, 1.

    7. M. Cratzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338.

    8. A. Kudo, Y. Miseki, “Heterogeneous photocatalyst materials for water splitting”, Chem. Soc. Rev. 2009, 38, 253.

    9. F. E. Osterloh, “Inorganic Materials as Catalysts for Photochemical Splitting of Water”, Chem. Mater., 2008, 20, 35.
    10. K. Maeda, K. Domen, “New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light”, J. Phys. Chem. C, 2007, 111, 7851.

    11. A. Kudo, “Development of photocatalyst materials for water splitting”, Inter. J. Hydrogen Ener., 2006, 31, 197.

    12. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, J. Thomas, “Photocatalysis for new energy production Recent advances in photocatalytic water splitting reactions for hydrogen production”, Catal. Today, 2007, 122, 51.

    13. Y. Matsumoto, U. Unal, N. Tanaka, A. Kudo, H. Kato, “Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts”, J. Solid State Chem., 2004, 177, 4205.

    14. J. N. Nian, C. C. Hu, H. Teng, “Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination”, Inter. J. Hydrogen Ener., 2008, 33, 2897.

    15. Y. Matsumoto, A. Funatsu, D. Matsuo, U. Unal, K. Ozawa, “Electrochemistry of Titanate(IV) Layered Oxides”, J. Phys. Chem. B, 2001, 105, 10893.

    16. H. Kato, A. kudo, “Water Splitting into H and O on Alkali Tantalate Photocatalysts ATaO (A=Li, Na, and K)”, J. Phys. Chem. B, 2001, 105, 4285.

    17. T. Ishihara, H. Nishiguchi, K. Fukamachi, Y. Takita, “Effects of Acceptor Doping to KTaO on Photocatalytic Decomposition of Pure HO”, J. Phys. Chem. B, 1999, 103, 1.

    18. H. Kato, H. Kobayashi, A. Kudo, “Role of Ag in Band Structures and Photocatalytic Properties of AgMO (M:Ta and Nb) with the Perovskite Structure”, J. Phys. Chem. B, 2002, 106, 12441.

    19. A. Kudo, H. Kato, “Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting”, Chem. Phys. Lett., 2000, 331, 373.

    20. S. Licht, “Solar Water Splitting To Generate Hydrogen Fuel:Photothermal Electrochemical Analysis”, J. Phys. Chem. B, 2003, 107, 4253.

    21. A. Galinska, J. Walendziewski, “Photocatalytic Water Splitting over Pt−TiO2 in the Presence of Sacrificial Reagents”, Energy & Fuels, 2005, 19, 1143.

    22. H. Kato, M. Hori, R.Konda, Y. Shimodaira, A. Kudo, “Construction of Z-scheme Type Heterogeneous Photocatalysis Systems for Water Splitting into H2 and O2 under Visible Light Irradiation”, Chem. Lett., 2004, 33, 1348.

    23. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation”, Chem. Commum., 2001, 23, 2416.
    24. K. Sayama, K. Mukasa, R. Abe, Y. Abe, H. Arakawa, “A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis”, J. Photochem. Photobiol. A, 2002, 148, 71.

    25. D. A. Tryk, A. Fujishima, K. Honda, “Recent topics in photoelectrochemistry: achievements and future prospects”, Electro. Acta., 2000, 45, 2363.

    26. H. Kato, A. Kudo, “New tantalate photocatalysts for water decomposition into H2 and O2”, Chem. Phys. Lett., 1998, 295, 487.

    27. I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, “Photocatalytic H Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)ZnS Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures”, J. Am. Chem. Soc., 2004, 126, 13406.

    28. W. H. Lin, C. Cheng, C. C. Hu, H. Teng, “NaTaO3 Photocatalysts of Different Crystalline Structures fot Water Splitting into H2 and O2”, Appl. Phys. Lett., 2006, 89, 211904.

    29. K. Domen, S. Naito, T. Onishi, K. Tamaru, “Study of the Photocatalytic Decomposition of Water Vapor over a NiO-SrTiO3 Catalyst”, J. Phys. Chem., 1982, 86, 3657.

    30. J. Ye, Z. Zou, A. Matsushita, “A novel series of water splitting photocatalysts NiM2O6 (M=Nb,Ta) active under visible light”, Inter. J. Hydrogen Ener., 2003, 28, 651.
    31. M. Yoshino, M. Kakihana, “Polymerizable Complex Synthesis of Pure Sr2NbxTa2-xO7 Solid Solutions with High Photocatalytic Activities for Water Decomposition into H2 and O2”, Chem. Mater., 2002, 14, 3369.

    32. H. Kato, A. Kudo, “Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts”, Catal. Today, 2003, 78, 561.

    33. A. Kudo, R.Niishiro, A. Iwase, H. Kato, “Effects of doping of metal cations on morphology, activity, and isible light response of photocatalysts”, Chem. Phys., 2007, 339, 104.

    34. A. Kudo, H. Kato, I. Tsuji, “Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting”, Chem. Lett., 2004, 33, 1534.

    35. R. Abe, K. Sayama, K. Domen, H. Arakawa, “Efficient hydrogen evolution from aqueous mixture of I− and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation”, Chem. Phys. Lett., 2002, 362, 441.

    36. M. Higashi, R. Abe, K. Teramura, T.Takato, B. Ohtani, K. Domen, “Two step water splitting into H2 and O2 under visible light by ATaO2N (A=Ca,Sr,Ba) and WO3 with IO3-/I- shuttle redox mediator”, Chem. Phys. Lett., 2008, 452, 120.

    37. K. Maeda, K. Teramura, N. Saito, Y. Inoue, K. Domen, “Photocatalytic Overall Water Splitting on Gallium Nitride Powder”, Bull. Chem. Soc. Jpn. 2007, 80, 1004.
    38. K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y.Inoue, H. Kobayashi, K. Domen, “Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst:Relationship between Physical Properties and Photocatalytic Activity”, J. Phys. Chem. B, 2005, 109, 20504.

    39. K. Maeda, H. Terashima, K. Kase, K. Domen, “Nanoparticulate precursor route to fine particles of TaON and ZrO2-TaON solid solution and their photocatalytic activity for hydrogen evolution under visible light”, Appl. Catal. A:Gener., 2009, 357, 206.

    40. M. Hara, G. Hitoki, T. Takata, J. N. Kondo, H. Kobayashi, K.Domen, “TaON and Ta3N5 as new visible light driven photocatalysts”, Catal. Today, 2003, 518, 555.

    41. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, “Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation”, J. Am. Chem. Soc., 2008, 130, 7176.

    42. X. wang, K. Maeda, Y. Lee, K. Domen, “Enhancement of photocatalytic activity of (Zn1+x Ge)(N2Ox) for visible-light-driven overall water splitting by calcination under nitrogen”, Chem. Phys. Lett., 2008, 457, 134.

    43. A. Kudo, I. Mikami, “photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution”, J. Chem. Soc., 1998, 94, 2929.

    44. I. Tsuji, H. Kato, A. Kudo, “Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS-CuInS2- AgInS2 Solid-Solution Photocatalyst”, Angew. Chem. Int. Ed., 2005, 44, 3565.

    45. K. sayama, H. Arakawa, “Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt–TiO2 catalyst”, J. Chem. Soc. Farady Trans., 1997, 93, 1647.

    46. K. Domen, A. Kudo, T. Onishi, N. Kosugi, H. Kuroda, “Photocatalytic Decomposition of Water into H2 and O2 Over NiO-SrTiO3 Powder”, J. Phys. Chem., 1986, 90, 292.

    47. K. Maeda, K. Terumura, D. Lu, N. Saito, Y. Inoue, K. Domen, “Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting”, Angew. Chem. Int. Ed., 2006, 45, 7806.

    48. V. Leute, “Solid state reactions in semiconductor systems”, Solid State Ionics., 1985, 17, 185.

    49. W. J. Dawason, “Hydrothermal Synthwsis of Asvanced Ceramic Powders”, Cerm. Bull, 1988, 10, 67.

    50. B. Jirhennsons, M. E. Staumanis, “Colloid Chemistry”, McMillan Co., New York, 1962.

    51. M. Hara, T. Takata, J. N. Konda, K. Domen, “Photocatalytic reduction of water by TaON under visible light irradiation”, Catal. Today, 2004, 313.

    52. K. Maeda, H. Terashima, K. Kase, M. Higashi, M. Tabata, K. Domen, “Surface Modification of TaON with Monoclinic ZrO2 to Produce a Composite Photocatalyst with Enhanced Hydrogen Evolution Activity under Visible Light”, Bull, Chem. Soc. Jpn., 2008, 81, 927.

    53. K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue, K. Domen, “Efficient Overall Water Splitting under Visible-Light Irradiation on (GaZn)(NO) Dispersed with Rh-Cr Mixed-Oxide Nanoparticles:Effect of Reaction Conditions on Photocatalytic Activit”y, J. Phys. Chem. B, 2006, 110, 13107.

    54. K. Maeda, K. Teramura, K. Domen, “Effect of post-calcination on photocatalytic activity of (Ga1-xZnx)(N1-xOx) solid solution for overall water splitting under visible light”, J. Catal., 2008, 254, 198.

    55. K. Maeda, H Hashiguchi, H. Masuda, R. Abe, K. Domen, “Photocatalytic Activity of (Ga1-xZnx)(N1-xOx) for Visible-Light-Driven H2 and O2 Evolution in the Presence of Sacrificial Reagents”, J. Phys. Chem. C, 2008, 112, 3447.

    56. K. Kamata, K. Maeda, D. Lu, Y. Kako, K. Domen, “Synthesis and photocatalytic activity of gallium-zinc-indium mixed oxynitride for hydrogen and oxygen evolution under visible light”, Chem. Phys. Lett., 2009, 470, 90.

    57. M. Moret, B. Gil, S. Ruffenach, O. Briot, C. Giesen, M. Heuken, S. Rushworth, T. Leese, M. Succi, “Optical, structural investigations and band-gap bowing parameter of GaInN alloys”, J. Crystal Growth, 2009, 311, 2795.
    58. K. Fujili, M. One, T. Ito, Y. Iwaki, A. Hirako, K. Ohkawa, “Band-Edge Energies and Photoelectrochemical Properties of n-Type AlxGa1-xN and InyGa1-yN Alloys”, J. Electr. Chem. Soc., 2007, 154, B175.

    59. Z. L. Fang, J. Y. Kang, W. Z. Shen, “An InGaN/GaN single quantum well improved by surface modification of GaN films”, Nanotech., 2009, 20, 045401.

    60. B. Monemar, P. P. Paskov, A. Kasic, “Optical properties of InN-the bandgap question”, Superlatt. Microstruc., 2005, 38, 38.

    61. W. Walukiewicz, S. X. Li, J. Wu, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, “Optical properies and electronic structure of InN and In-rich group III-nitride alloys, Optical properties and electronic structure of InN and In-rich group III-nitride alloys”, J. Crystal Growth, 2004, 269, 119.

    62. J. Li, J. Y. Lin, H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes”, Appl. Phys. Lett., 2008, 93, 162107.

    63. V. Lebedev, V. M. Polykov, S. Hnuguth-Frank, V. Limalla, Ch. Y. Wang, G. Ecke, F. Schwierz, A. Schober, J. G. Lozaro, F. M. Morales, D. GonZale, O. Ambacher, “Electronic and photoconductive properties of ultrathin InGaN photodetectors”, J. Appl. Phys., 2008, 103, 073715.

    64. S. K. Lin, K. T. Wu, C. P. Hugng, C. T. Liang, Y. H. Chang, Y. F. Chen, P. H. Chang, N. C. Chen, C. A. Chang, H. C. Peng, C. F. Shih, K. S. Liu, T. Y. Lin, “Electron transport in In-rich InxGa1-xN films”, J. Appl. Phys., 2005, 97, 046101.

    65. M. Gunes, N. Balkan, D. Zanato, W. J. Schaff, “A comparative of electrical and optical properties of InN and In0.48Ga0.52N”, Microelec. J., 2009, 40, 872.

    66. L. Hsu, R. E. Jones, S. X. Li, K. M. Yu, W. Walukkiewicz., “Electron mobility in InN and III-N alloys”, J. Appl. Phys., 2007, 102, 073705.

    67. X. M. Cai, F. Ye, S. Y. Jing, D. P. Zhang, D. Fan, E. Q. Xie, “CVD growth of InGaN nanowires”, J. Alloys Comp., 2009, 467, 472.

    68. C. C. Chen, K. L. Hsieh, G. C. Chi, C. C. Chuo, J. I. Chyi, C. A. Chang, “Thermal annealing effects on stimulated emission of high-indium-content InGaN/GaN single quantum well structure”, Solid State Elect., 2002, 46, 1123.

    69. F. K. Yam, Z. Hassan, “InGaN:An overiew of the growth kinetics, physical properties and emission mechanisms”, Superlatt. Microstruc., 2008, 43, 1.

    70. T. Takata, K. Shinohara, A. Tanaka, M. Hara, J. N. Kondo, K. domen, “A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure”, J. Photochem. Photobiol. A:Chem., 1997, 106, 45.

    71. M. Yan, F.Chem. J. Zhang, M. Anpo, “ Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties”, J. Phys, Chem. B, 2005, 109, 8673.

    72. B. D. Cullity, S. R. Stock, “Elements of X-ray Diffraction”, 3rd ed., Prentice Hall, 2001.

    73. D. G. Barton, M. Shtein, R. D. Wilson, S. L. Solied, E. Iglesia, “Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures”, J. Phys. Chem. B, 1999, 103, 630.

    74. 陳力俊, “材料電子顯微鏡”, 精密儀器發展中心, 1999.

    75. K. Maeda, H. Teramura, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, “Overall water splitting using (oxy)nitride photocatalysts”, Pure Appl. Chem., 2006, 78, 2267.

    76. N. H. Tran, W. J. Holzschuh, R. N. Lamb, L. J. Lai, Y. W. Yang, “Structural Order in Oxygenated Gallium Nitride Films”, J. phys. Chem. B, 2003, 107, 9256.

    77. Q. X. Guo, M. Nishio, H. Ogawa, A. Wakahara, A. Yoshida, “Electronic structure of indium nitride studied by photoelectron spectroscopy”, Phys. Rev. B, 1998, 58, 15304.

    78. G. Schon, “Auger and direct electron spectra in X-ray photoelectron studies of zinc, zinc oxide, gallium and gallium oxide”, J. Electron Spectrosc. Relat. Phenom., 1973, 2, 75.

    下載圖示 校內:2011-07-31公開
    校外:2011-07-31公開
    QR CODE