| 研究生: |
張佳勝 Chang, Chia-Sheng |
|---|---|
| 論文名稱: |
以光激化學氣相沉機積法成長二氧化矽薄膜與其在碳化矽MSM/MIS光檢測器之應用 SiO2 Grown by Photo-CVD and it's Application of SiC MSM/MIS Photodetectors |
| 指導教授: |
張守進
Chang, Shoou-Jinn 蘇炎坤 Su, Yan-Kuin 陳志方 Chen, Jone F. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 二氧化矽 、光檢測器 、光激化學氣相沉積法 、碳化矽 |
| 外文關鍵詞: | SiC, photodetector, SiO2, Photo-CVD |
| 相關次數: | 點閱:129 下載:25 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於SiC材料本身具有很高的熔點、良好的熱導電性、高載子飽和速度、高崩潰電場及明顯的化學惰性等優點,我將MSM光檢測器元件應用在SiC上,為了讓響應度提高,我以透明金屬ITO作為電極,不過ITO與SiC所形成的金半接面,其蕭基位障太低以致於暗電流太大,因此為了兼顧光穿透性與較高蕭基位障,我以薄薄的一層Ni(約100A)去阻擋暗電流,在10伏特偏壓下可以達到3.37個數量級的光電流對暗電流響應比,而另一種透明金屬TiN應用在SiC MSM光檢測器上,雖然對光的穿透性不如ITO,不過仍比傳統的非透光金屬強,其在10伏特偏壓下可以達到3.52個數量級的光電流對暗電流響應比。
另一方面,由於SiC是少數化合物半導體材可以直接利用熱成長方式去成長氧化層,傳統SiO2的成長都是以高溫熱成長的方式或是以低溫的Plasma-enhanced CVD系統去成長SiO2,前者的高溫對元件的特性可能會有很大的影響,在介面處也可能產生許多的defect;而後者雖然成長溫度較低,不過系統本身的plasma會在氧化層內部與介面處形成許多oxide charge與interface trap density等等,使得MOS元件的特性劣化。因此我以光激化學氣相沉積法在SiC成長氧化層,並透過MIS電容的結構量得I-V特性,在500度C的基板溫度下,在4 MV/cm的漏電流密度只有3.15E-8 A/cm2,由C-V特性並利用高頻電容法去計算不同基板成長溫度下的interface trap density,interface trap density會隨著基板成長溫度的上升而跟著下降,在500 oC的基板溫度下,其interface trap density為5.66E11 cm-2eV-1。另外,利用光激化學氣相沉積法(Photo-CVD)成長所得的氧化層應用在MIS光檢測器上,藉由一層薄薄的氧化層去阻擋暗電流,並以ITO為電極去提高對光的響應,在氧化層厚度2.5 nm 與5 nm的MIS光檢測器中,10伏特偏壓下其光電流對暗電流響應比分別為1.98與2.08個數量級左右。
Owing to the high melt-point, high thermal-conductivity, high carrier saturation velocity, high breakdown field and obviously chemical inactivation of SiC materials, MSM photodetectors were applied on SiC. Transparent electrodes ITO were used on photodetectors in order to enhance the photo response. However, due to the low Schottky barrier height of ITO/SiC, the dark-current of MSM photodetectors was too large. In order to keep the transmittance of light and the high Schottky barrier height, thin Ni films were used to suppress the dark-current on photodetectors. The ratio of photo-current to dark-current was 3.37 orders of magnitude on ITO/Ni/SiC MSM photodetectors at 10 V bias. Moreover, the other transparent material TiN was also applied on SiC MSM photodetectors as electrodes. Although the transmittance of TiN was less than ITO, TiN was still more transparent than the opaque metals. The photo-current to dark-current ratio of TiN/SiC MSM photodetectors was 3.52 orders of magnitude at 10 V bias.
In the other way, SiC was one of few compound semiconductors which could directly grow SiO2 by thermal oxidation. The SiO2 films was traditionally grown by high temperature thermal oxidation and low temperature plasma-enhanced CVD system. The former would affect the characteristic of the device due to the heat and generate lots of defects in the interface. Although the temperature of the latter was much lower, the plasma would produce lots of oxide charge in the SiO2 films and interface trap density in the interface. The characteristic of MOS device would be degraded. Therefore, SiO2 were grown on SiC by Photo-CVD. The characteristic of I-V was measured by the structure of MIS capacitors. The leakage current density of SiO2 grown at 500 oC was only 3.15E-8 A/cm2 at 4 MV/cm electric field The C-V measurement and the high frequency capacitance method were used to calculate the interface trap density in different substrate temperature during growth. The interface trap density will decrease with the substrate temperature increasing. The interface trap density was 5.66E11 cm-2eV-1 at 500 oC substrate temperature during growth. Moreover, photo-SiO2 was used to apply on MIS photodetectors. Thin oxide films were used to suppress the dark-current and the ITO films were used as the electrodes to enhance the photo response. The ratio of photo-current to dark-current were 1.98 and 2.08 orders for 2.5 nm and 5 nm oxides on MIS photodetectors at 10 bias.
[1] Acheson, A. G., Engl. Pat. 17911 (1892); the method has been described in Knippenberg, W. F. (1963). Philips Research Report 18, pp 161-274.
[2] Lely, J. A. Ber. Dtsch. Kerm. Ges. 32 (1995) 229-231
[3] Tairov, Yu. M., Tsvetkov, V. F., Lilov, S. K., and Safaralive, G. K. J. Cryst. Growth 36 (1976) 147-151.
[4] Tairov, Yu. M., Raihel, F. I., and Tsvetkov, V. F. Neorganicheskie Materiali (1982) 1390-1391.
[5] Tairov, Y. M., and Tsvetkov, V. F. J. Cryst. Growth 43 (1978) 209.
[6] Tesvetkov, V. F., Allen, S. T., Kong, H. S., and Carter, C. H., Jr. Kyoto ICSCRM, (1995) pp. 107-112.
[7] Powell, J. A., Matus, L. G., and Kuczmarski, M. A. J. Electrochem. Soc. 134 (1987) 1558-1564.
[8] Sacuma, E., Yoshida, S., Okumura, H., Wisawa, S., and Endo, K. Bulk Electrotechnical Lab. 51, 12 (1987) 26.
[9] Slater, D. B., Jr., Lipkin, L. A., Johnson, G. M., Suvorov, A. V., and Palmour, J. W. Kyoto ICSCRM (1995), pp.805-808.
[10] Sywe, B. S., Yu, Z. J., Burchhard, H., and Tanaka, T. J. Electrochem. Soc. 141 (1994) 510-513.
[11] Davis, R. F., Kelner, G., Shur, M., Palmour, J. A., and Edmond, J. A., Proc. IEEE 79 (1991) 677-701.
[12] G. Kelner, M. S. Shur, S. Binari, K. J. Sleger, and H. Kong, IEEE Trans. Electron Devices, Vol. 36, no. 6, pp. 1045-1049 (1989).
[13] S. T. Sheppard, M. R. Melloch, and J. A. Cooper, Jr., IEEE Electron Device Letters, vol. 17, no. 1, pp.4-6 (1996).
[14] S. Sriram, R. C. Clarke, A. A. Burk, Jr., H. M. Hogwood, P. G. MacMillan, P. A. Orphanos, R. R. Siergiej, T. J. Smith, C. D. Brandt, M. C. Driver, and R. H. Hopkins, IEEE Electron Device Lett., Vol. 15, no. 11, pp. 458-459 (1994).
[15] H. McD, Hobgood, R. C. Glass, G. Augustine, R. H. Hopkins, J. Jenny, M. Skowronski, W. C. Mitchel, and M. Roth, Appl. Phys. Lett. 66, 11, pp. 1364-1366, Mar. 13, 1995.
[16] S. Sriram, G. Augustine, A. A. Burk, R. C. Glass, H. M. Hobgood, P. A. Orphanos, L. B. Rowland, T. J. Smith, C. D. Brandt, M. C. Driver, and R. H. Hopkins, IEEE Electron Dev Lett. 17, pp. 369-371, July 1996.
[17] L. Muhlhoff, W. J. Choyke, M. J. Bozack and J. T. Yates, J. Appl. Phys. 60, 2842 (1986).
[18] Harris. C. I., Afanasev. V. V., Microelectronic Engineering Vol. 36. Issue 1-4. June 1997. pp. 167-174.
[19] C. J. Huang and Y. K. Su, Journal of Applied Physical, Vol. 67, 3350 (1990).
[20] S. J. Chang, Y. K. Su, F. S. Juang, C. T. Lin, C. D. Chiang and Y. T. Cherng, IEEE J. Quantum Electron., Vol. 36, 583 (2000).
[21] C. T. Lin, Y. K. Su, S. J. Chang, H. T. Huang, S. M. Chang and T. P. Sun, IEEE Photo. Technol. Lett., Vol. 9, 232 (1997).
[22] H. Morko¸ c, S. Strite, G. B. Gao, M. E. Lin, B. Sverdiov, and M. Burns,“Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semicon-ductor device technologies,” J. Appl. Phys., Vol. 76, pp. 1363–1398, 1994.
[23] C. H. Chen, S. J. Chang, Y. K. Su, Senior Member, IEEE, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, Member, IEEE, IEEE Photonics Technology Letts, Vol. 13, no. 8, August 2001.
[24] Y. G. Zhang, A. Z. Li, and A. G. Milnes, IEEE Photonics Technology Lett, vol.9, no.3 March 1997.
[25] Karmann, S., Haberstroh, C., Engelbrecht, F., Suttrop, W., Schoner, A., Schadt, M., Helbig, R., Pensl, G., G., Stein, R. A., and Leibenzeder, S., Physica B 185 (1993) 75-78.
[26] Fuyuki, T., Nakayama, M., Yoshinobu, T., Shiomi, H., and Matsuami, H., J. Cryst. Growth 95 (1989) 461.
[27] H. T. Chiu, and J. S. Hsu, Thin Solid Films, 252, 13 (1994).
[28] H. Nakamatsu, K. Hirata, and S. Kawai, Mat. Res. Soc. Symp. Proc., 101, 397 (1988).
[29] Fissel, A., Schroter, B., and Richter, W., Appl. Phys. Lett. 66 (1995) 3182-3184.
[30] Kaneda, S., Sakamoto, Y., Nishi, C., Kanaya, M., and Hannai, S. I., Jpn. J. Appl. Phys. Lett. 25 (1986) 1307.
[31] Choyke, W. J., Devaty, R. P., Clemen, L. L., Yoganathan, M., Pensl, G., and Hassler, C., Appl. Phys. Lett. 65 (1994) 1668-1670.
[32] 汪建民, 林敬二, 江志強, 材料分析, pp 501-522.
[33] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) physics and technology, chapter 8, New Jersey: Artech House, 1982.
[34] C. J. Huang and Y. K. Su, ”Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposited”, Journal of Applied Physical, Vol. 67, No. 3350, (1990).
[35] Lori A., Lipkin and John W. Palmour, “Insulator investigation on SiC for improved reliability”, IEEE Transactions on Electron Device, Vol. 46, No. 3, March (1999).