| 研究生: |
林得順 Lin, De-Shun |
|---|---|
| 論文名稱: |
以生質柴油製程副產物甘油進行醱酵生產丁醇並以薄膜蒸餾法進行丁醇同步移除以提升丁醇產量 Producing butanol by fermentation using waste glycerol from biodiesel manufacture process and enhancing butanol production by membrane distillation-mediated in-situ butanol removal |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 生質丁醇 、梭狀芽孢桿菌 、雙基質策略 、纖維料源 、甘油 、葡萄糖 、丁酸 、真空薄膜蒸餾 |
| 外文關鍵詞: | Biobutanol, Clostridium pasteurianum, dual substrate strategy, lignocellulosic feedstock, glycerol, glucose, butyrate, vacuum membrane distillation |
| 相關次數: | 點閱:236 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討以厭氧醱酵技術將生產生質柴油的副產物-廢棄甘油轉化為生質丁醇之可行性應用。本研究企圖以自行篩選之厭氧產氫菌株Clostridium pasteuriaunm CH4探討生產丁醇之最適化條件與策略。結果顯示,在甘油濃度為100 g/L、FeSO4.7H2O濃度為25 mg/L以及酵母萃取物濃度為4 g/L時,可得最佳之丁醇濃度為12.6 g/L。此外,由於丁酸為丁醇醱酵之前驅物,故本研究亦探討丁酸添加對於丁醇生產的影響。結果顯示,當添加丁酸濃度為6.0 g/L時,可以促進丁醇的生成效能,其平均丁醇生產速率為0.12 g/L/h、丁醇產率為0.307 mol butanol/mol glycerol。然而當甘油濃度增加為100 g/L時,甘油利用率只有81.9%,丁醇生產效率也大幅下降,這可能是由於甘油濃度提高時,產生高濃度之丁醇,造成對菌體的毒害,形成產物抑制的現象。有鑑於此,本研究利用薄膜蒸餾(membrane distillation)技術,進行同步產物(丁醇)移除,以促進丁醇之生產效能。結合添加丁酸策略與薄膜蒸餾技術後,丁醇產量大幅提升至29.8 g/L,其產率也增加至0.39 mol butanol/mol glycerol。
雖然添加丁酸可促進丁醇之生產,但丁酸價格昂貴,造成丁醇生產經濟效益之降低。基於成本之考量,本研究改以源於木質纖維素的葡萄糖為碳源,讓菌體在醱酵初期先行生產丁酸,以取代直接添加丁酸之策略。並嘗試使用two-stage策略(先以葡萄糖為碳源再以甘油為碳源)與dual-substrate (同時以葡萄糖與甘油為碳源)策略,比較兩者之效能。結果發現利用dual-substrate策略,不僅操作方便,而且其碳源利用的遲滯期也較短。接著,進一步探討在dual-substrate策略下,甘油與葡萄糖之最佳比例。結果發現,當葡萄糖濃度為20 g/L、甘油濃度為60 g/L,有最佳之丁醇產量、丁醇生產速率與丁醇產率,分別為13.3 g/L、0.14 g/L/h與0.33 mol butanol/mol glycerol。此外,本研究也以木質纖維素料源與廢棄甘油為碳源,以降低丁醇生產之成本。結果顯示,以25 g/L蔗渣以及60 g/L廢棄甘油為碳源時,其丁醇產量可達11.8 g/L、丁醇產率為0.33 mol butanol/mol glycerol、丁醇生產速率為0.14 g/L/h。
另外,本研究也採取饋料批次進料策略,並與薄膜蒸餾技術結合,以同時改善基質抑制與產物抑制之現象。相較於批次醱酵的結果,結合饋料批次與薄膜蒸餾產物移除技術進行丁醇醱酵,其丁醇生產速率(0.3 g/L/h)可以提高250%,丁醇產量(49.1 g/L)也增加了將近四倍,而其丁醇產率(0.31 g butanol/g glycerol)可達到理論產率的80%。
Butanol was produced from glycerol by Clostridium pasteurianum CH4 isolated from effluent of H2-producing bioreactor. The effects of glycerol concentration (0-200 g/L), iron ion (II) concentration (0-50 mg/L) and yeast extract concentration (0-5 g/L) on butanol production were investigated on batch system. The maximum butanol production (12.6 g/L) was obtained under the optimum glycerol, yeast extract and iron ion (II) concentration of 100 g/L, 4.0 g/L, and 25 mg/L, respectively. Furthermore, to enhance butanol production efficiency, butyrate, a precursor for butanol formation,was added to the fermentation broth to investigate its effect on butanol production. The results show that addition of 6.0 g/L butyrate could improve butanol production yield (from 0.200 to 0.307 mol butanol/mol glycerol), average butanol production rate (from 0.08 to 0.12 g/L/h), and results in a maximum butanol production rate of 0.788 g/L/h. Meanwhile, addition of 6.0 g/L butyrate also leads to a decrease in 1, 3-propandiol concentration from 16.9 to 7.5 g/L.
When glycrol concentration was increased to 100 g/L, the glycerol utilization was only 81.9% due probably to product inhibition arising from an increase in butanol concentration. To avoid the toxicity effect of butanol, vacuum membrane distillation (VMD) was adopted to specifically remove butanol from the culture broth during batch fermentation. The employment of VMD could not only alleviate the inhibitory effect of butanol but also concentrate butanol concentration via condensation, thereby making downstream processing easier. The combination of VMD and fermentation strategy (e.g., butyrate addition) could enhance maximum butanol concentration from 12.6 to 29.8 g/L and improve the yield from 0.307 to 0.39 mol butanol/mol glycerol.
Although adding butyrate could improve the butanol production performance, the high cost of butanol makes the strategy economically infeasible. An alternative approach was to use glucose as carbon source to stimulate cell growth and butyrate formation of C. pasteurianum CH4. After that, glycerol was used for the fermentation to produce butanol in the presence of butyrate produced due to assimilation of glucose. Comparing two-stage (using glucose as carbon source first and then adding glycerol) and dual-substrate (both glucose and glycerol were added in the beginning) operation strategies, the dual-substrate system is easier to operate with a shorter lag phase for carbon source utilization and better butanol production performance. Hence, the dual-substrate system was used for further studies. The optimum glucose to glycerol ratio in dual-substrate system was 20 g/L to 60 g/L, giving a maximum butanol titer of 13.3 g/L, a productivity of 0.19 g/L/h, and a yield of 0.38 mol butanol/mol glycerol. Moreover, we used cellulose (from bagasse) and raw glycerol as the substrate to reduce the cost of carbon source. Under the optimum condition, using enzymatic bagasse hydrolysates (25 g/L) and raw glycerol (60 g/L) as the carbon sources, maximum butanol production can reach 11.8 g/L with a yield of 0.33 mol butanol/mol glycerol and a productivity of 0.14 g/L/h, respectively.
Butanol was also produced via integration of fed-batch fermentation with VMD product-recovery system to avoid both substrate and product inhibition. In this process, butanol productivity (0.3 g/L/h) was improved about 250% of that obtained from batch fermentation, while effective butanol concentration (49.1 g/L) enhanced approximately 4-fold when compared with that obtained from batch fermentation. The butanol yield was 0.31 g butanol/g glycerol, which represents for 80% of the theoretically maximum yield.
Anand P, Saxena RK, Marwah RG. 2011. A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Applied Microbiology and Biotechnology.
Asad-ur-Rehman, Saman WRG, Nomura N, Sato S, Matsumura M. 2008. Pre-treatment and utilization of raw glycerol from sunflower oil biodiesel for growth and 1,3-propanediol production by Clostridium butyricum. Journal of Chemical Technology and Biotechnology 83:1072-1080.
Asada Y, Miyake J. 1999. Photobiological hydrogen production. Journal of Bioscience and Bioengineering 88:1-6.
Biebl H. 2001. Fermentation of glycerol by Clostridium pasteurianum - batch and continuous culture studies. Journal of Industrial Microbiology & Biotechnology 27:18-26.
Biebl H, Menzel K, Zeng AP, Deckwer WD. 1999. Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology 52:289-297.
Bochman M, Cotton FA, Murillo CA, Wilkinson G. 1999. Advanced inorganic chemistry. USA: John Wiley & Sons, Inc.
Cara C, Moya M, Ballesteros I, Negro MJ, Gonzalez A, Ruiz E. 2007. Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochemistry 42:1003-1009.
Chen M, Zhao J, Xia LM. 2008a. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers 71:411-415.
Chen SD, Lee KS, Lo YC, Chen WM, Wu JF, Lin CY, Chang JS. 2008b. Batch and continuous biohydrogen production from starch hydrolysate by Clostridium species. International Journal of Hydrogen Energy 33:1803-1812.
Cheng CL, Chang JS. 2011. Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresource Technology. DOI: 10.1016/j.biortech.2011.03.053
Chi ZY, Pyle D, Wen ZY, Frear C, Chen SL. 2007. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry 42:1537-1545.
Choi WJ. 2008. Glycerol-based biorefinery for fuels and chemicals. Recent Patents on Biotechnology 2:173-180.
Ciriminna R, Palmisano G, Della Pina C, Rossi M, Pagliaro M. 2006. One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron Letters 47:6993-6995.
Curcio E, Drioli E. 2005. Membrane distillation and related operations - A review. Separation and Purification Reviews 34:35-86.
Dabrock B, Bahl H, Gottschalk G. 1992. Parameters Affecting Solvent Production by Clostridium-Pasteurianum. Applied and Environmental Microbiology 58:1233-1239.
Das D, Veziroglu TN. 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26:13-28.
Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ. 2005. Low-pressure hydrogenolysis of glycerol to propylene glycol. Applied Catalysis a-General 281:225-231.
Desai RP, Nielsen LK, Papoutsakis ET. 1999. Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. Journal of Biotechnology 71:191-205.
Dunn S. 2002. Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy 27:235-264.
Durre P. 2008. Fermentative butanol production - Bulk chemical and biofuel. Incredible Anaerobes: From Physiology to Genomics to Fuels 1125:353-362.
Emtiazi G, Nahvi I. 2000. Multi-enzyme production by Cellulomonas sp grown on wheat straw. Biomass & Bioenergy 19:31-37.
Ezeji TC, Karcher PM, Qureshi N, Blaschek HP. 2005. Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess Biosyst Eng 27:207-214.
Ezeji TC, Qureshi N, Blaschek HP. 2003. Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World Journal of Microbiology & Biotechnology 19:595-603.
Ezeji TC, Qureshi N, Blaschek HP. 2004. Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Applied Microbiology and Biotechnology 63:653-658.
Falbe J. 1970. Carbon monoxide in organic synthesis. Berlin-Heidelberg- New York: Springer Verlag.
Fond O, Mattaammouri G, Petitdemange H, Engasser JM. 1985. The Role of Acids on the Production of Acetone and Butanol by Clostridium-Acetobutylicum. Applied Microbiology and Biotechnology 22:195-200.
Ghose TK. 1987. Measurement of Cellulase Activities. Pure and Applied Chemistry 59:257-268.
Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P. 2005. Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metabolic Engineering 7:329-336.
Graminha EBN, Gongalves AZL, Pirota RDPB, Balsalobre MAA, Da Silva R, Gomes E. 2008. Enzyme production by solid-state fermentation: Application to animal nutrition. Animal Feed Science and Technology 144:1-22.
Gryta M, Morawski AW, Tomaszewska M. 2000. Ethanol production in membrane distillation bioreactor. Catalysis Today 56:159-165.
Hafez H, Nakhla G, El Naggar H. 2010. An integrated system for hydrogen and methane production during landfill leachate treatment. International Journal of Hydrogen Energy 35:5010-5014.
Hallenbeck PC, Benemann JR. 2002. Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy 27:1185-1193.
Huang HJ, Ramaswamy S, Tschirner UW, Ramarao BV. 2008. A review of separation technologies in current and future biorefineries. Separation and Purification Technology 62:1-21.
Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N. 2005. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. Journal of Bioscience and Bioengineering 100:260-265.
Izquierdo-Gil MA, Jonsson G. 2003. Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). Journal of Membrane Science 214:113-130.
Jones DT, Woods DR. 1986. Acetone-Butanol Fermentation Revisited. Microbiological Reviews 50:484-524.
Kumar P, Barrett DM, Delwiche MJ, Stroeve P. 2009. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research 48:3713-3729.
Lee PC, Lee WG, Lee SY, Chang HN. 2001. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnology and Bioengineering 72:41-48.
Lee SM, Cho MO, Park CH, Chung YC, Kim JH, Sang BI, Um Y. 2008a. Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy & Fuels 22:3459-3464.
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. 2008b. Fermentative Butanol Production by Clostridia. Biotechnology and Bioengineering 101:209-228.
Lin CY, Lay CH. 2004. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy 29:275-281.
Liu XG, Yang ST. 2006. Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochemistry 41:801-808.
Ma FR, Hanna MA. 1999. Biodiesel production: a review. Bioresource Technology 70:1-15.
Mariano AP, Costa CBB, de Angelis DD, Maugeri F, Atala DIP, Maciel MRW, Maciel R. 2009. Optimization Strategies Based on Sequential Quadratic Programming Applied for a Fermentation Process for Butanol Production. Applied Biochemistry and Biotechnology 159:366-381.
Martin JR, Petitdemange H, Ballongue J, Gay R. 1983. Effects of Acetic and Butyric Acids on Solvents Production by Clostridium-Acetobutylicum. Biotechnology Letters 5:89-94.
Momirlan M, Veziroglu T. 1999. Recent directions of world hydrogen production. Renewable & Sustainable Energy Reviews 3:219-231.
Moxley G, Zhu ZG, Zhang YHP. 2008. Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. Journal of Agricultural and Food Chemistry 56:7885-7890.
Mu Y, Yu HQ, Wang G. 2007. A kinetic approach to anaerobic hydrogen-producing process. Water Research 41:1152-1160.
Nitisinprasert S, Temmes A. 1991. The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CMC126 isolated from municipal sewage sludge. Journal of Applied Bacteriology 71:154-161.
NREL. 1996. Measurement of cellulase activities. Technical Report USA.
Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. 2007. From glycerol to value-added products. Angewandte Chemie-International Edition 46:4434-4440.
Petrov K, Petrova P. 2009. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Applied Microbiology and Biotechnology 84:659-665.
Qureshi N, Maddox IS, Friedl A. 1992. Application of Continuous Substrate Feeding to the Abe Fermentation - Relief of Product Inhibition Using Extraction, Perstraction, Stripping, and Pervaporation. Biotechnology Progress 8:382-390.
Qureshi N, Meagher MM, Huang J, Hutkins RW. 2001. Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. Journal of Membrane Science 187:93-102.
Qureshi N, Saha BC, Hector RE, Cotta MA. 2008. Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: Production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass & Bioenergy 32:1353-1358.
Rubin EM. 2008. Genomics of cellulosic biofuels. Nature 454:841-845.
Rubinow SI. 2002. Introduction to mathematical biology. A wiley-interscience:42.
Saratale GD, Chen SD, Lo YC, Saratale RG, Chang JS. 2008. Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation - a review. Journal of Scientific & Industrial Research 67:962-979.
Schonheit P, Brandis A, Thauer RK. 1979. Ferredoxin Degradation in Growing Clostridium-Pasteurianum during Periods of Iron Deprivation. Archives of Microbiology 120:73-76.
Schugerl K. 2000. Integrated processing of biotechnology products. Biotechnology Advances 18:581-599.
Shoko E, McLellan B, Dicks AL, da Costa JCD. 2006. Hydrogen from coal: Production and utilisation technologies. International Journal of Coal Geology 65:213-222.
Soares RR, Simonetti DA, Dumesic JA. 2006. Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angewandte Chemie-International Edition 45:3982-3985.
Stiegel GJ, Ramezan M. 2006. Hydrogen from coal gasification: An economical pathway to a sustainable energy future. International Journal of Coal Geology 65:173-190.
Suto M, Tomita F. 2001. Induction and catabolite repression mechanisms of cellulase in fungi. Journal of Bioscience and Bioengineering 92:305-311.
Taconi KA, Venkataramanan KP, Johnson DT. 2009. Growth and Solvent Production by Clostridium pasteurianum ATCC (R) 6013 (TM) Utilizing Biodiesel-Derived Crude Glycerol as the Sole Carbon Source. Environmental Progress & Sustainable Energy 28:100-110.
Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S. 2004. High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. Journal of Bioscience and Bioengineering 98:263-268.
Urn Y, Ahn JH, Sang BI. 2011. Butanol production from thin stillage using Clostridium pasteurianum. Bioresource Technology 102:4934-4937.
Van Ginkel S, Sung SW, Lay JJ. 2001. Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology 35:4726-4730.
Vane LM. 2008. Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioproducts & Biorefining-Biofpr 2:553-588.
Wu JF, Chang JS. 2006. Biohydrogen production using starch as the carbon substrate. Master's thesis Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
Yazdani SS, Gonzalez R. 2007. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology 18:213-219.
Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ. 2009. Problems with the microbial production of butanol. Journal of Industrial Microbiology & Biotechnology 36:1127-1138.
Zigova J, Sturdik E. 2000. Advances in biotechnological production of butyric acid. Journal of Industrial Microbiology & Biotechnology 24:153-160.
Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH. 2006. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Applied Microbiology and Biotechnology 71:587-597.
Zwietering MH, Jongenburger I, Rombouts FM, Vantriet K. 1990. Modeling of the Bacterial-Growth Curve. Applied and Environmental Microbiology 56:1875-1881.
校內:2021-01-01公開