簡易檢索 / 詳目顯示

研究生: 顏亘佑
Yan, Xuan-you
論文名稱: 芘衍生物的合成及其在有機發光二極體的應用
Synthesis and Application in Organic Light Emitting Diode of Pyrene Derivatives
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 93
中文關鍵詞: 有機發光二極體
外文關鍵詞: Pyrene, OLED
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機光電材料具有高的螢光效率和半導體性質,在發光二極體(EL)是未來展示器的發展重點,藉由有機分子結構的設計可以得到特定放光波長。本研究主要是以鈴木偶合反應(Suzuki coupling reaction),合成出一系列以芘(pyrene)為主體之發光材料。藉由合成形成支鏈,可以避免激發複合體(aggregates/excimers)所造成低量子效率長波長放射光的情形,形成應用性高的發藍光材料。此外化合物經由氫光譜及質譜儀加以鑑定其結構,熱性質方面,由熱重分析儀得知1.1-bipyrene、1,4-di(pyren-1-yl)benzene、2,7-di(pyren-1-yl)-9H-fluorene的熱烈解溫度T5d分別為382、437及202℃,由熱差掃描熱分析儀測得化合物並無觀察到玻璃轉化溫度(Tg),顯示其具有極高之熱穩定性,化合物的光學性質則由紫外光-可見光光譜儀和螢光光譜儀測得,化合物在二氯甲烷溶劑中所得之最大吸收波長範圍分別為349、351及348 nm;最大螢光放射波長分別為437.6、432.6及418 nm,放光顏色皆為藍色範圍,在固態薄膜最大螢光放射波長分別為479.6、457.6及455.6 nm,放光顏色分別為藍綠光、藍光及藍光範圍,而經由循環伏安法量測,可得知HOMO與LUMO範圍分別介於-5.70~-5.76 eV與-2.78~-2.83 eV,此外化合物並具有不錯的量子產率。

    Organic materials have been expected to be applicable for practical electro-luminescent (EL) devices because of their high florescence efficiency and semiconducting properties. Through molecular design of organic materials, we can get a selection of emission colors. In this study, a series of novel bipolar light emitting materials containing pyrene were synthesized successfully via Suzuki coupling reaction. The use of pyrene molecule is limited because they formed π-aggregates/excimers which lead long wave excimer emission with low quantum efficiency. By introducting long or branched side chains, pyrene derivatives were useful for the blue emmiting material wuth high quantum efficiency. All the compounds were characterized by H1-NMR and Mass. The thermal properties of these materials were investigated by TGA and DSC. The decomposition temperatures (Td) of DP, DPB and DPF range are 382, 437 and 202℃and do not observe glass transition temperature (Tg). The optical properties of these materials were studied by UV/Vis and PL spectroscopic methods. All of these compounds exhibit the maxaimum absorption in the range of 348~351 nm in dichloromethane. The maxium fluorescence wavelength lies within 455~480 nm in solid film. Compounds emit in blue region. Compounds are fluorescent with good quantum yield. HOMO and LUMO energies derived from cyclic voltametry data are in the range of -5.70~-5.76 eV and -2.78~-2.83 eV, respectively.

    中文摘要 ------------------------------------------------Ⅰ 英文摘要 ------------------------------------------------Ⅱ 誌謝 ----------------------------------------------------Ⅲ 目錄 ----------------------------------------------------Ⅳ 圖目錄 --------------------------------------------------Ⅵ 表目錄 --------------------------------------------------Ⅸ 第一章 緒論 1-1 前言 -------------------------------------------------1 1-2 發光二極體的發光原理 ---------------------------------2 1-3 有機發光二極體之簡介 ---------------------------------6 1-4 有機發光二極體元件基本結構 -------------------------- 7 1-5 有機發光共軛分子的設計 ------------------------------13 1-6 研究動機 --------------------------------------------17 第二章 實驗部份 2-1 實驗藥品 --------------------------------------------19 2-2 芘衍生物的合成 --------------------------------------20 2-3 相對量子產率 ----------------------------------------27 2-4 循環伏安法 ------------------------------------------30 2-5 元件量測 --------------------------------------------35 第三章 結果與討論 3-1 合成與結構鑑定 --------------------------------------36 3-2 化合物的光學性質 ------------------------------------43 3-3 化合物熱的性質鑑定 ----------------------------------63 3-4 化合物的電化學性質 ----------------------------------73 3-5 元件的製備與討論 ------------------------------------80 第四章 結論 4-1 結論 ------------------------------------------------85 參考文獻 ------------------------------------------------88 附錄 ----------------------------------------------------91

    1 D. D. C. Bradley, Advanced Materials 4 (11), 756 (1992).
    2 D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, D. K. Fu, T. M. Swager, A. G. MacDiarmid, and A. J. Epstein, Applied Physics Letters 70 (13), 1644 (1997).
    3 P. W. M. Blom, M. J. M. deJong, and J. J. M. Vleggaar, Applied Physics Letters 68 (23), 3308 (1996).
    4 U. Lemmer, D. Vacar, D. Moses, A. J. Heeger, T. Ohnishi, and T. Noguchi, Applied Physics Letters 68 (21), 3007 (1996).
    5 Q. B. Pei, G. Yu, C. Zhang, Y. Yang, and A. J. Heeger, Science 269 (5227), 1086 (1995).
    6 Y. Yang and Q. B. Pei, Applied Physics Letters 68 (19), 2708 (1996).
    7 W. Riess, S. Karg, V. Dyakonov, M. Meier, and M. Schwoerer, Journal of Luminescence 60-1, 906 (1994).
    8 N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, Applied Physics Letters 62 (6), 585 (1993).
    9 A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, Reviews of Modern Physics 60 (3), 781 (1988).
    10 A. B. Holmes, D. D. C. Bradley, A. R. Brown, P. L. Burn, J. H. Burroughes, R. H. Friend, N. C. Greenham, R. W. Gymer, D. A. Halliday, R. W. Jackson, A. Kraft, J. H. F. Martens, K. Pichler, and I. D. W. Samuel, Synthetic Metals 57 (1), 4031 (1993).
    11 M. Pope, H. P. Kallmann, and P. Magnante, Journal of Chemical Physics 38, 2042 (1963).
    12 G. G. Roberts, M. Mcginnity, W. A. Barlow, and P. S. Vincett, Solid State Communications 32 (8), 683 (1979).
    13 P. S. Vincett and W. A. Barlow, Thin Solid Films 71 (2), 305 (1980).
    14 C. W. Tang and S. A. Vanslyke, Applied Physics Letters 51 (12), 913 (1987).
    15 A. Kraft, A. C. Grimsdale, and A. B. Holmes, Angewandte Chemie-International Edition 37 (4), 402 (1998).
    16 E. Moons, Journal of Physics-Condensed Matter 14 (47), 12235 (2002).
    17 Y. Hamada, C. Adachi, T. Tsutsui, and S. Saito, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 31 (6A), 1812 (1992).
    18 D. OBrien, A. Bleyer, D. G. Lidzey, D. D. C. Bradley, and T. Tsutsui, Journal of Applied Physics 82 (5), 2662 (1997).
    19 H. Ueda, T. Kitahora, K. Furukawa, and Y. Terasaka, Synthetic Metals 91 (1-3), 257 (1997).
    20 C. W. Tang, S. A. Vanslyke, and C. H. Chen, Journal of Applied Physics 65 (9), 3610 (1989).
    21 J. M. Shi and C. W. Tang, Applied Physics Letters 70 (13), 1665 (1997).
    22 M. Pomerantz, H. Yang, and Y. Cheng, Macromolecules 28 (17), 5706 (1995).
    23 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347 (6293), 539 (1990).
    24 C. H. Chen, J. Shi, and C. W. Tang, Macromolecular Symposia 125, 1 (1998).
    25 C. H. Chen and J. M. Shi, Coordination Chemistry Reviews 171, 161 (1998).
    26 U. Mitschke and P. Bauerle, Journal of Materials Chemistry 10 (7), 1471 (2000).
    27 L. S. Hung and C. H. Chen, Materials Science & Engineering R-Reports 39 (5-6), 143 (2002).
    28 J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Applied Physics Letters 64 (7), 815 (1994).
    29 J. Kido, H. Shionoya, and K. Nagai, Applied Physics Letters 67 (16), 2281 (1995).
    30 F. C. Chen, Y. Yang, M. E. Thompson, and J. Kido, Applied Physics Letters 80 (13), 2308 (2002).
    31 J. V. Goodpaster, J. F. Harrison, and V. L. McGuffin, Journal of Physical Chemistry A 102 (19), 3372 (1998).
    32 I. Akiyama, K. C. Li, P. R. Lebreton, P. P. Fu, and R. G. Harvey, Journal of Physical Chemistry 83 (23), 2997 (1979).
    33 E. Clar, J. M. Robertson, R. Schlogl, and W. Schmidt, Journal of the American Chemical Society 103 (6), 1320 (1981).
    34 Y. Kawashima, T. Hashimoto, H. Nakano, and K. Hirao, Theoretical Chemistry Accounts 102 (1-6), 49 (1999).
    35 T. Hashimoto, H. Nakano, and K. Hirao, Journal of Chemical Physics 104 (16), 6244 (1996).
    36 E. Clar and W. Schmidt, Tetrahedron 32 (21), 2563 (1976).
    37 E. A. Mangle and M. R. Topp, Journal of Physical Chemistry 90 (5), 802 (1986).
    38 B. C. Wang, J. C. Chang, H. C. Tso, H. F. Hsu, and C. Y. Cheng, Journal of Molecular Structure-Theochem 629, 11 (2003).
    39 Y. H. Park and B. S. Cheong, Current Applied Physics 6 (4), 700 (2006).
    40 N. Miyaura, K. Yamada, H. Suginome, and A. Suzuki, Journal of the American Chemical Society 107 (4), 972 (1985).
    41 J. F. Rusling and S. L. Suib, Advanced Materials 6 (12), 922 (1994).
    42 M. C. Pham, M. Mostefai, M. Simon, and P. C. Lacaze, Synthetic Metals 63 (1), 7 (1994).
    43 M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, and Z. V. Vardeny, Nature 411 (6837), 617 (2001).
    44 Y. Liu, M. S. Liu, and A. K. Y. Jen, Acta Polymerica 50 (2-3), 105 (1999).
    45 H. Meng, W. L. Yu, and W. Huang, Macromolecules 32 (26), 8841 (1999).
    46 J. R. Malpass, D. A. Hemmings, A. L. Wallis, S. R. Fletcher, and S. Patel, Journal of the Chemical Society-Perkin Transactions 1 (9), 1044 (2001).
    47 Y. Geerts, U. Keller, U. Scherf, M. Schneider, and K. Mullen, Abstracts of Papers of the American Chemical Society 213, 45 (1997).
    48 R. Jakubiak, C. J. Collison, W. C. Wan, L. J. Rothberg, and B. R. Hsieh, Journal of Physical Chemistry A 103 (14), 2394 (1999).
    49 S. A. Jenekhe and J. A. Osaheni, Science 265 (5173), 765 (1994).
    50 X. H. Qian, Y. L. Zhang, K. C. Chen, Z. F. Tao, and Y. G. Shen, Dyes and Pigments 32 (4), 229 (1996).
    51 J. L. Bredas, R. Silbey, D. S. Boudreaux, and R. R. Chance, Journal of the American Chemical Society 105 (22), 6555 (1983).

    下載圖示 校內:2018-08-21公開
    校外:2018-08-21公開
    QR CODE