簡易檢索 / 詳目顯示

研究生: 李重佑
Li, Jung-You
論文名稱: 添加微量鈦元素對A356鋁合金孔洞分佈之影響
Effect of trace titanium element on the distribution of porosity in A356 Aluminum Alloy
指導教授: 張煥修
Chang, Edward
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 87
中文關鍵詞: 孔洞鋁合金
外文關鍵詞: pore, aluminum, casting
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A356鋁合金鑄件有適當的強度,且可以鑄造複雜的鑄件,因此被廣泛的用於工業上。但由於鋁合金鑄件容易造成微縮孔的缺陷使得機械性質變差。本實驗研究晶粒細化對縮孔形成的影響,並與孔洞的生成理論比較。
    實驗利用SKD61工具鋼金屬模鑄造25Φ×150L㎜試棒。將已調配好成分(無添加Ti及添加0.15%Ti)的A356鋁合金鋁錠熔融鑄造,控制模溫、固定鋁湯的初始氫含量,並以HP溫度量測器量測凝固時的溫度變化,以獲得實驗所需的熱參數。
    實驗結果顯示,晶粒細化使鑄件的孔隙率減小,此減小的原因,主要是由於孔洞平均半徑減小。由理論推導孔洞半徑受到鑄件晶粒大小、凝固時間、金屬液中之氣孔壓力的影響;添加Ti的鑄件,具有較小的晶粒大小及較短的凝固時間,預測其孔洞半徑小於無添加Ti鑄件。此預測符合實驗。
    孔洞平均距離越短反映孔洞數量越多。實驗結果顯示,添加Ti的鑄件其孔洞平均距離較短,因此Ti的添加使鑄件的孔洞數量上升。
    添加Ti使孔洞的平均半徑減小,孔洞平均距離減小。而孔洞平均半徑減小是造成Ti鑄件孔隙率下降的主因,本研究顯示孔洞的生成理論對於鑄件孔隙率之預測,大致與實驗相符。

    A356 aluminum alloy are being widely applied in the industry due to the material’s good castability and mechanical properties. However, the mechanical properties can be degraded by the formation of porosity. Grain refinement is considered as a required treatment to upgrade the mechanical properties of the alloy. In this study, we investigate the effect of grain refinement on the distribution of porosity in a permanent mold casting.
    SKD61 permanent mold was used to cast 25Φ×150L㎜ sample. In the experiment, the mold temperature and the hydrogen content in the melt were fixed. Thermal measurements were used to obtain the thermal variables in the casting.
    Grain refiner was found to reduce the porosity of A356 casting from the result of experiment. In the grain-refined condition, rp varies with Pg, grain size, and local solidification time. Because of the smaller grain size in the grain-refined condition, rp was found smaller than that in the non grain-refined condition.
    The result of the experiment shows that there is a small re is smaller in the grain-refined condition. However, the reduced of porosity content is mainly due to the decrease of rp in the grain-refined condition. In this study, the prediction of porosity content by theoretical analysis generally agrees with the experiment.

    第一章 序論…………………………………………………………………1 第二章 理論基礎……………………………………………………………3 2-1 晶粒細化機制………………………………………………………3 2-2 金屬之凝固類型……………………………………………………6 2-3 金屬凝固之補充機構………………………………………………6 2-4 縮孔之類型…..……………………………………………………8 2-5 氫含量對微縮孔的影響……………………………………………9 2-6 凝固時間(tf)對微縮孔形成影響…………………………………11 2-7 微縮孔形成理論……………………………………………………11 第三章 實驗流程與方法……………………………………………………15 3-1 鑄造流程……………………………………………………………15 3-2 氫含量定量量測……………………………………………………16 3-3 熱分析………………………………………………………………17 3-4 微縮孔含量量測……………………………………………………18 3-5 金相觀察……………………………………………………………18 3-6 二次樹枝晶臂間距(SDAS)之量測…………………………………19 3-7 孔洞平均半徑與孔洞平均距離之量測……………………………19 第四章 結果…………………………………………………………………20 4-1 孔隙率的變化………………………………………………………20 4-1-1 未添加Ti前之鑄件孔隙率變化…………………………………20 4-1-2 添加Ti鑄件孔隙率之變化………………………………………20 4-2 晶粒大小(rG)………………………………………………………20 4-2-1 未添加Ti鑄件之平均晶粒粒徑…………………………………20 4-2-2 添加Ti鑄件之平均晶粒粒徑……………………………………21 4-3 熱參數………………………………………………………………21 4-3-1 凝固曲線…………………………………………………………21 4-3-2 凝固時間…………………………………………………………22 4-3-3 溫度梯度(G)……………………………………………………22 4-3-4 固液相介面速度(Vs)……………………………………………23 4-4 孔洞分布……………………………………………………………23 4-4-1 孔洞平均半徑(rp)………………………………………………23 4-4-2 孔洞平均距離(re)………………………………………………24 4-5 二次樹枝狀晶臂間距………………………………………………24 4-6 金屬液中的氣體壓力………………………………………………24 第五章 結果討論……………………………………………………………26 5-1 孔隙率的分佈………………………………………………………26 5-2 孔隙率的影響因素…………………………………………………26 5-2-1 晶粒粒徑(rG)對孔隙率的影響…………………………………26 5-2-2 熱參數對孔隙率的影響…………………………………………27 5-2-3 收縮負壓(ΔP)在金屬液中的氣體壓力的影響………………28 5-2-4 金屬液中的氣體壓力(Pg)對孔隙率的影響……………………29 5-3 孔洞平均半徑(rp)…………………………………………………29 5-4 孔洞平均距離(re)…………………………………………………32 5-5 孔隙率的理論預測…………………………………………………32 5-6 孔洞半徑與孔洞距離對孔隙率的影響……………………………33 第六章 結論………………………………………………………………34 第七章 參考文獻…………………………………………………………36

    1. C. C. Wong, S. C. Mao, Y. Y. Lan, J. F. Tsai, “Thermal Analysis of A356
    Alloy-First Part: Grain Refinement,” 鑄工 第19卷 第4期, 民國82年12月, p25
    2. J. E. Gnizieski and B. M. Closset, “The Treatment of Liquid Aluminum-Silicon
    Alloys,” Book, The American Foundrymen’s Society, 1990.
    3. Y. S. Kuo, “A Study of Riser Feeding Behavior of High Strength A201 Aluminum
    Alloy,” Ph. D. Thesis, National Cheng Kung University, R.O.C., 1990.
    4. Y. S. Kuo, E. Chang and Y. L. Lin, “The feeding Effect of risers on the
    Mechanical Properties of A201 Al Alloy Plate Casting,” AFS Trans., 1989,
    p777.
    5. Y. W. Lee, E. Chang and C. F. Chieu, “Modeling of Feeding Behavior of
    Solidifying Al-7Si-0.3Mg Alloy Plate Casting,” Metal. Trans. B, vol.
    21B(1990), p715.
    6. J. Zou, S. Shivknmar, D. Apelian, “Modeling of Microstructure Evolution and
    Microporosity Formation in Cast Aluminum Alloys,” AFS Transactions, 90-178,
    p871.
    7. J. Ampureo, Ch. Charbon, A. F. A. Hoadley and M. Rappaz, “Modeling of
    Microporosity Evolution During the Solidification of Metallic Alloys,”
    Materials Processing in the Computer Age, 1991
    8. H. huang, V.k. Suri, N. El-kaddah, J. t. Berry, “The Effect of Interdendritic
    Feeding on Microporosity Formation,” Modeling of Casting, Welding and
    Advanced Solidification Processes Ⅵ(1993), p219.
    9. P. Rousset, M. Rappaz, and B. Hannart, “Modeling of Inverse Segregation and
    Porosity Formation in Directionally Solidfied Aluminum Alloys,” Metallurgical
    and Materials Transactions A, vol. 26A, September 1995, p2349.
    10.黃立伍譯、施登士校〝鋁矽合金的最佳晶粒細化劑與調質劑,〞 鑄造月刊 第124期, 民
    國89年1月。
    11.N. Yang, “How Does a Good Grain Refiner Work, ” Light metal age, Oct, 1983.
    12.Y. W. Lee, “A Study on the Mechanism of Porosity Formation in Cast A356 and
    A206 Aluminum Alloy,” Ph.D. Thesis, National Cheng Kung University, R.O.C.,
    1992.
    13.Merton C. Flemings, “Solidification Processing,” MCGRAW- Hill Book Company,
    Chapter 5.
    14.J. Campbell, “Feeding Mechanisms in Castings,” AFS Cast Metals Research
    Journal, March (1969), p1.
    15.Q. T. Fang and D. A. Granger: “Porosity Formation in Modified and Unmodified
    A356 Alloy Castings,” AFS Transaction, Vol. 97 (1989), p989.
    16.D. R. Poirier, K. Yeum and A. L. Maples, “A Thermodynamic Predicition for
    Microporosity Formation in Aluminum-Rich AI-Cu Alloys,” Metallurgical
    Transactions A, 18A(1987), pl979.
    17.J. Campbell, “Pore Nucleation in Solidifying Metals,” ISI. Report No.
    110(1967), pl8.
    18.J. Campbell, “Hydrostatic Tension in Solidifying Alloys,” Trans. Met.
    Society. AIME No. 242(1968), p268.
    19.D. J. Talbot, “Effects of Hydrogen in Aluminum, Magnesium, Copper, and Their
    Alloys,” Inter. Metal. Review, 20 (1975), pl66.
    20.S. N. Entwistle B. Sc., M. SC., Ph.D., A. K. Gupta B., M. Tech. and S.L.
    Malhotra B. Sc., MSc, D.I.C., Ph.D. “Effect of Hydrogen Gas Content on
    Shrinkage Defect in Aluminum Alloy Castings,” The British Foundryman April
    (1989), pl29.
    21.R. A. Entwistle, J. E. Gruzleski and P. M. Thomas: “Solidification and
    Casting of Metals,” Proc. International Conference on Solidification, 1979,
    the metal society, p345.
    22.X. G. Cheng and S. Engler, “Formation of Gas Porosity in Aluminium Alloys,”
    AFS Transactions, 1994.
    23.F. Chiesa, R. Fuoco and J. E. Gruzleski, “Porosity Distribution in
    Directionally Solidified Test Bars Sand Cast from a Controlled A356 Melt,”
    Cast Metals, 7 (1994), no. 2, p113.
    24.T. S. Piwanka and Flemings, “Pore Formation in Solidification,” Trans. Met.
    Soc. AIME, 236 (1966), p1157.
    25.K. Kubo and R. D. Pehike, “Mathematical Modeling of Porosity Formation in
    Solidification,” Metal. Trans. B, Vol. 16B(1985), p359.
    26.K. Yeum and D. R. Poirier, “Prediction Microporosity in Aluminum Alloys”,
    27.G. K. Sigworth and C. Wang, “Mechanisms of Porosity Formation during
    Solidification: A Theoretical Analysis,” Metall. Trans. B, Vol. 24B(1993),
    p349.
    28.S. T. Kao, E. Chang and Y. W. Lee, “Role of Interdendritic Fluid Flow on the
    Porosity Formation in A206 Alloy Plate Casting,” Materials Transactions, JIM,
    Vol. 35(1994), p632.
    29.S. T. Kao and E. Chang, “The role of the pressure index in porosity formation
    in A356 alloy Casting,” Cast Metals, Vol. 7(1995), p219.
    30.W. kurz and D. J. Fisher , “Fundamentals of Solidification,” (Trans. Tech. Publications Ltd , Switzerland)(1989), p83.
    31.鄭明城, “A356鋁合金圓柱鑄件之微縮孔定量模式研究,” 碩士論文, 民國85年6月
    32.侯國南, “電腦模擬A356鋁合金鑄件之微縮孔分布研究,” 碩士論文, 民國85年6月
    33.Lawrence D. Ray, “Long-Term Assessment of the ALSCAN Hydrogen Analyzer,”
    Light Metals (1992), p1069.
    34.Lawrence D. Ray, “A Comoarative Assessment of Quantitative Hydrogen Analyzer
    Commomly Used in the Aluminum Industry,” Reynolds Metals Company.
    35.Xiao-Guang Chen et.al, “Comparing Hydrogen Testing Methods for Wrought
    Aluminum,” JOM, Aug (1994), p34.
    36.ALSCAN model "F" User's Manual, Version 1.2, Bomem Inc.Canada.
    37.Susan P. Thomas, Lennart Backerud et.al, “Solidification Charactteristics of
    Aluminum Alloys,” Vol. 3, Book, 1986, p15~33.
    38.Barbara R. Krohn et.al, “Thermal Analysis,” Modern Casting, Mar (1985), p21.
    39.L. Arnberg, L. Backerud, G. Chai, “Solidification Characteristics of
    Aluminum Alloys,” Vol. 2, Book, 1986, p15.
    40.汪建民, “材料分析,” Book, 1998, p117.
    41.R. E. Spear and G. R. Gardner, “Dendrite Cell Size,” AFS Transactions, Vol.
    71(1963), p209.
    42.Kun-Dar Li, E. Chang, “A Mechanism of Porosity Distribution in A356 Aluminum
    Alloy Casting,” Materials Transactions, Vol. 43,No. 7(2002) p.1711-1715.
    43.Kun-Dar Li, “A Study on the Mechanism of Porosity Formation in Aluminum Alloy
    Castings,” Ph.D. Thesis, National Cheng Kung University, R.O.C., 2003
    44.Kun-Dar Li, Edward Chang, “Mechanism of nucleation and growth of porosity in
    solidifying A356 aluminum alloy:An analytical solution,” unpublished work.

    下載圖示 校內:立即公開
    校外:2003-07-25公開
    QR CODE