簡易檢索 / 詳目顯示

研究生: 吳聲敏
Wu, Sheng-Min
論文名稱: 穿隧式電晶體之正偏壓可靠度與異常次臨界擺幅改善之研究
Investigation on Reliability of Positive Bias Stress and Anomalous Subthreshold Swing Reducing of Poly-Si Tunnel Field-Effect Transistor
指導教授: 高國興
Kao, Kuo-Hsing
共同指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 40
中文關鍵詞: 多晶矽薄膜電晶體穿隧式場效電晶體可靠度
外文關鍵詞: Polycrystalline-Si, Thin-film transistor(TFT), Tunnel field-effect transistor(T-FET), Reliability
相關次數: 點閱:167下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們製做多晶矽薄膜電晶體與多晶矽穿隧式場效電晶體,並且在室溫下施加正偏壓應力研究其可靠度行為,對於多晶矽薄膜電晶體,常態量測中因為其一載子傳輸機制是電場調變擴散與遷移,其二擁有較大的傳導截面積所以擁有較高的開啟電流達3.08x10-4,在分別施加閘極正偏壓應力15V、20V、25V後汲極電流曲線開始出現劣化,經過1000秒的應力後,次臨界擺幅變量為0.34V/dec(正偏壓應力閘極20V)到 0.65V/dec(正偏壓應力閘極25V),轉導的最大值也下降42μS (正偏壓應力閘極20V) 到71μS(正偏壓應力閘極25V),對於多晶矽穿隧式場效電晶體,常態量測中擁有比較低的次臨界擺幅歸咎於較低的源極參雜與陷阱輔助穿隧效應,意外發現施加閘極正偏壓應力後改善了次臨界擺幅與臨界電壓,但轉導的最大值依舊下降,我們推測兩個原因: 第一,這些應力產生的陷阱態已被電子填補,總陷阱密度下降而提升次臨界擺幅,但有研究顯示其填補只是暫態行為而且薄膜電晶體的次臨界擺幅並未改善,第二,應力讓原有的陷阱態產生同一能階的陷阱態,因為陷阱輔助穿隧效應正是穿隧式電晶體在次臨界區的載子傳輸機制,所以陷阱態的能階分布對其特性影響極大,如果應力造成陷阱態能階分布改變使其產生同一能階的陷阱態將可以大大降低陷阱輔助穿隧電流並提升次臨界擺幅。

    In this study, we fabricated and demonstrated poly-Si TFTs and poly-Si TFET with positive bias reliability research in low temperature. For TFT device, it demonstrates higher on current up to 3.08x10-4 A due to carrier transport mechanism of electric field drift and larger effective conduction area. Id-Vg curve starts to split up with different subthreshold swing after gate voltage stress. The SS shift after 1000sec stress from 0.34V/dec to 0.65V/dec and maximum of transconductance variation Δgmmax from 42μS to 71μS for gate stress 15V and 25 V respectively. For TFET device, poor S.S. degradation is due to the low source doping concentration and the trap assisted tunneling (TAT). Positive Bias Stress only improve SS and Vth of TFET without gm. We implied two possibilities. Firstly, stress generated traps be recovered and compensated by electrons might be the reason. However, as studies shows that the recovery and compensation of traps from carrier are only temporary condition. Secondly, stress create traps with the same energy level to reduce TAT current. Since TAT is dominant TFET degradation of subthreshold region, density of traps and trap energy are important for SS behavior. If stress change traps energy distribution that produces the same traps level, TAT current could be reduce by limiting tunneling direction then suppress SS deterioration.

    Contents 摘要 i Abstract ii 誌謝 iii Contents v List of Figures vii Chapter 1 1 Introduction 1 1.1 General Background 1 1.2 Short Channel Effect (SCE) 2 1.2.1 Drain Induced Barrier Lowering (DIBL) 2 1.2.2 Gate Induced Drain Leakage (GIDL) 2 1.3 Tunnel-Field Effect Transistor (TFET) 3 1.3.1 Shockley–Read–Hall (SRH) generation–recombination 5 1.3.2 Trap-assisted tunneling (TAT) 6 1.3.3 Band-to-band tunneling (BTBT) 6 1.4 Thin-Film Transistor (TFT) 7 1.4.1 Introduction of Grain Boundary 7 1.4.2 Poly-Silicon Thin Film Transistor 8 1.5 Poly-Si Tunnel-Field Effect Transistor (poly-Si TFET) 9 1.6 Reliability mechanism of poly-Si TFT 10 1.6.1 Hot carrier effect 10 1.6.2 Positive Bias Stress (PBS) 10 1.6.3 Negative Bias Stress (NBS) 11 1.7 Motivation 11 Chapter 2 12 Device Fabrication and Experimental Setup 12 2.1 Experimental Procedure 12 2.2 Method of Device Parameter Extraction 12 2.2.1 Threshold Voltage 12 2.2.2 Subthreshold Swing 13 2.2.3 On current and Minimum Current 13 2.2.4 Interface Trap State 13 2.2.5 Grain Boundary Trap State 13 Chapter 3 22 Results and Discussion 21 3.1 Normal measurement 21 3.2 Stress Measurement 24 3.2.1 Positive Bias Stress of poly-Si TFT 24 3.2.2 Positive Bias Stress of poly-Si TFET 31 3-3 Summary 36 Conclusions and Future Work 37 4.1 Conclusions 37 4.2 Future Work 37 References 38

    References
    [1] K. J. Kuhn, "Moore's Law Past 32nm: Future Challenges in Device Scaling," in Computational Electronics, 2009. IWCE09.13th International Workshop, pp. 1-6., 2009
    [2] C. H. Fa et al, "Tunnel field-effect transistors as energy-efficient electronic switches.," Nature, vol. 479, issue 7373 pp. 329-337, 2011
    [3] A. Vandooren et al, N. Collaert, and A.V. Y. Thean, “Investigation of the subthreshold swing in vertical tunnel-FETs using H2 and D2 anneals,” IEEE Trans. Electron Devices, vol. 61, no. 2, pp. 359–364, Feb. 2014.
    [4] Shockley W. Read et al, “Statistics of the Recombination of Holes and Electron,” Physical Review, vol. 87, issue. 46, pp. 835-842, 1952
    [5] Redwan N. Sajjad et al,.“Trap Assisted Tunneling and Its Effect on Subthreshold Swing of Tunnel FETs,” IEEE Transactions on Electron Devices, issue. 99, 2016
    [6] Amey M. Walke et al, “Part II: Investigation of Subthreshold Swing in Line Tunnel FETs Using Bias Stress Measurements,” IEEE Transactions on Electron Devices, vol. 66, issue. 12, pp. 4065-4072, 2013
    [7] Z. Qin et al, "Low-subthreshold-swing tunnel transistors," Electron Device Letters, IEEE, vol. 27, pp. 297-300, 2006
    [8] Uygar E. Avci et al .“Tunnel Field-Effect Transistors: Prospects
    and Challenges,” IEEE Transactions on Electron Devices, vol. 3, no. 3, pp. 88-95, 2014
    [9] K. Boucart et al, "Double-Gate Tunnel FET With High- Gate Dielectric," Electron Devices, IEEE Transactions on, vol. 54, pp. 1725-1733, 2007.
    [10] A. Vandooren et al, "Impact of process and geometrical parameters on the electrical characteristics of vertical nanowire silicon n-TFETs," Solid-State Electronics, vol. 72, pp. 82-87, 2012.
    [11] Donald A. Neamen, “Semiconductor Physics and Devices Basic Principles, ” 3rd edn (McGraw-Hill, 2003).
    [12] Yi-Hsuan Chen et al, "Low-temperature polycrystalline-silicon tunneling thin-film transistors with MILC," in IEEE Electron Device Letters, vol. 34, pp. 1017 – 1019, 2013.
    [13] C. H. Fa et al,"The poly-silicon insulated-gate field-effect transistor," Electron Devices, IEEE Transactions on, vol. 13, pp. 290-291, 1966.
    [14] K.R Olasupo et al,"Leakage current mechanism in submicron polysilicon thin-film transistors," IEEE Trans. Elec. Dev., vol. 43, pp. 1218-1223, Aug 1996.
    [15] Adrian M. Ionescu1 et al,"Hot-electron-induced MOSFET degradation;Model, monitor, and improvement," in Nature. vol. 479, pp. 329-337,2009.
    [16] M.-W. Ma et al, “Reliability mechanisms of LTPS-TFT with HfO2 gate dielectric: PBTI, NBTI, and hot-carrier stress,” IEEE Trans. Electron Devices, vol. 55, no. 5, pp. 1153–1160, May. 2008.
    [17] C.-Y. Chen et al, “Negative bias temperature instabil- ity in low-temperature polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 2993–3000, Dec. 2006.
    [18] K. Boucart et al, "Threshold voltage in Tunnel FETs: physical definition, extraction, scaling and impact on IC design," in Solid State Device Research Conference, 2007. ESSDERC 2007. 37th European, pp. 299-302, 2007.
    [19] K. Bhuwalka et al, “Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering,” IEEE Trans. Elec. Dev., vol. 52, no. 5, pp. 909-917, 2005.
    [20] W.C.-Y. Ma et al, “Performance Improvement of Poly-Si Tunnel FETs by Trap Density Reduction,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 864–868, FEB. 2013.
    [21] D. K. Mohata et al, “Demonstration of Improved Heteroepitaxy, Scaled Gate Stack and Reduced Interface States Enabling Heterojunction Tunnel FETs with High Drive Current and High On-Off Ratio” VLSI Technology (VLSIT), 2012 Symposium on, 12-14 June 2012.
    [22] A. M.Walke et al., “Part I: Impact of field-induced quantum confinement on the subthreshold swing behavior of line TFETs,” IEEE Trans. Electron Devices, vol. 60, no. 12, pp. 4057–4064, 2013.
    [23] J. Levinson et al,"Conductivity behavior in polycrystalline semiconductor thin film transistors", J.Appl. Phys, vol. 53, no. 2, pp. 1193-1202, 1982.
    [24] R. E. Proano et al, “Development and electrical properties of undoped polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 1915–1922, Sept. 1989.
    [25] Yi Ruei Wu et al, “Low-temperature microwave annealing for tunnel field-effect transistor,” IEEE Trans. Electron Devices, vol. 36, pp. 105–107, 2015.
    [26] Katsunori Onishi et al, “Bias-temperature instabilities of polysilicon gate HfO2 MOSFETs,” IEEE Trans. Electron Devices, vol. 50, pp. 1517–1524, 2003.
    [27] I. Starkov et al, “Analysis of the Threshold Voltage Turn-Around Effect in High-Voltage n-MOSFETs Due to Hot-Carrier Stress,” Reliability Physics Symposium (IRPS), IEEE International, 2012.
    [28] Wu, I. Wei Huang et al, “Passivation Kinetics of Two Types of Defects in Polysilicon TFT by Plasma Hydrogenation,” IEEE Trans. Electron Devices, vol. 12, issue 4, pp. 181–183, 1991.
    [29] J.H. Stathis et al, “Reliability of advanced high-k/metal-gate n-FET devices,” Microelectronics Reliability vol. 50, 1199–1202, 2010

    下載圖示 校內:2020-01-19公開
    校外:2020-01-19公開
    QR CODE