簡易檢索 / 詳目顯示

研究生: 邱心彥
Chiu, Hsin-Yen
論文名稱: 考慮土壤結構互制效應之邊坡擋土系統即時監測與預警
Development of a warning framework for slope retaining system based on soil-structure interactions and real-time monitoring
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 邊坡擋土系統土壤結構互制關係即時監測系統預警架構
外文關鍵詞: Slope retaining system, Soil-structure interaction, Real-time monitoring system, Warning framework
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以PYWALL軟體進行模擬,應用其系統考慮土壤結構互制關係的優勢,有效模擬柔性擋土牆之變形行為,分析邊坡擋土系統之牆頂旋轉角變化,以定義場址預警值,再搭配客製化無線監測系統對研究場址進行自動化監測,並建立預警架構。研究場址位於台20線52k處之公路邊坡擋土系統,此場址過去曾有破壞之歷史,至今邊坡仍處於不穩定狀態。研究利用可量測地下水位、土壤分層含水量、地表傾斜、擋土牆傾斜與擋土牆裂縫變化等功能之客製化監測系統進行現地監測,監測模組以廣為應用之微機電系統搭配不同感測器,結合資料儲存及無線通訊功能模組,於選定場址內形成區域網路,再透過LTE(4G)技術將監測數據即時上傳至雲端平台。研究以地下水位做為改變因子,應用PYWALL軟體模擬現地水位升降時,對於現地擋土牆變形影響,據此定義出研究場址之旋轉角預警值為0.3°~0.35°及地下水位深度預警值為2.9至4公尺,與現地監測比對其結果後與預警值吻合,顯示模擬預警值具有參考性。

    This study uses PYWALL software to simulate, apply consider the advantages of soil-structure interaction, effectively simulate the deformation behavior of flexible retaining wall, analyze the change of wall top rotation angle of slope retaining system to define the site warning value. The monitoring site is monitored automatically by the customized wireless monitoring system and a warning framework is established. The monitoring site is located on the roadside slope retaining system at South Cross-Islond Highway 52K. This site has a history of destruction in the past, and the slope is still in an unstable state. The research uses the customized monitoring system that can measure the groundwater level, soil water content, surface inclination, retaining wall inclination and cracks in the retaining wall. The monitoring module is widely used in the MEMS system. With different sensors, combined with data storage and wireless communication function modules, a regional network is formed in the selected site, and the monitoring data is instantly uploaded to the cloud platform through LTE (4G) technology. In the study, the ground water level is used as the change factor, and the PYWALL software is used to simulate the local water level rise and fall to know the influence of the existing retaining wall deformation. The warning value of the rotation angle of the monitoring site is defined as 0.3°~0.35° and the ground water depth warning value is 2.9 to 4 meters, which is fit with the warning value after the results of the monitoring. It shows that the simulated warning value is informative.

    摘要 I Abstract II 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究對象、方法與流程 2 第二章 文獻回顧 3 2-1 極限平衡分析 3 2-1-1 Coulomb土壓力理論 3 2-1-2 Rankine土壓力理論 5 2-1-3 視土壓力理論 8 2-1-4 極限平衡法(Limit Equilibrium Method) 9 2-2 側向載重下牆體變位分析 9 2-2-1 地盤反力法(Subgrade Reaction Method) 9 2-2-2 有限元素法(Finite Element Method) 10 2-2-3 p-y曲線法(p-y curve) 11 2-3 邊坡破壞及擋土牆破壞 12 2-3-1 邊坡破壞 12 2-3-2 擋土牆體破壞 14 2-4 監測預警 15 第三章 擋土系統土壤結構互制分析 18 3-1 PYWALL軟體基本介紹 18 3-2 現地擋土系統模擬 19 3-2-1 模擬分析流程 19 3-2-2 現地場址模擬 21 第四章 邊坡擋土監測系統 37 4-1 系統架構 37 4-2 系統感測器 38 4-2-1 電容式含水量計 39 4-2-2 傾度儀 40 4-2-3 沉水式液位計 41 4-2-4 裂縫計 42 4-3 系統組成 44 4-3-1 微控制器 44 4-3-2 時鐘與數據儲存模組 45 4-3-3 數據擷取模組 46 4-3-4 無線傳輸模組 46 4-3-5 電源系統 48 4-3-6 定時斷電模組 48 4-4 系統監測模組 49 4-4-1 無線監測模組 50 4-4-2 系統程式流程 51 4-4-3 系統硬體架構 53 4-4-4 雲端即時顯示平台 55 第五章 現地監測成果 57 5-1 監測場址 57 5-1-1 地理位置與破壞歷史 57 5-1-2 區域地質 58 5-2 監測儀器佈設 59 5-3 現地監測成果 62 5-3-1 邊坡土層監測成果 62 5-3-2 地下水位監測成果 64 5-3-3 擋土設施監測成果 65 第六章 預警架構 67 6-1 預警架構建立 67 6-2 預警架構應用與分析 69 第七章 結論與建議 76 7-1 研究結論 76 7-2 研究建議 77 參考文獻 78

    內政部建築研究所(2001),建築物基礎構造設計規範,營建雜誌社,台北市。
    伸安營造股份有限公司(2011),臺七甲線41k+700迴頭彎災害復建工程竣工圖,交通部公路總局第四區養護工程處。
    宋國城、林慶偉、林偉雄、林文正(2000),甲仙地質圖幅及說明書1/50000,經濟部中央地質調查所。
    邱永芳、黃安斌、饒正、李瑞庭、陳志芳、何彦德(2011),全光纖式邊坡穩定監測系統整合與現地應用測試(4/4),交通部運輸研究所。
    邱永芳、胡啟文、李良輝、張庭榮(2018),公路邊坡崩塌近景攝影測量自動判讀系統開發應用研究,港灣期刊。
    青山工程顧問股份有限公司(2017),台20線52k+150路基保護工程委託地滑調查、測量及設計服務工作監測總成果報告修正二版,交通部公路總局第五區養護工程處。
    洪芯琦(2018),崩積層邊坡滑動即時雲端監測系統研發,國立成功大學土木工程研究所碩士論文。
    陳志芳、謝明志、張文忠、黃安斌、許智超、周仕勳、趙慶宇、甯敘堯(2017),公路邊坡崩塌監測之無線感測網路模組研發(2/2),交通部運輸研究所。
    許琦、曾國鴻(2004),大高雄地區坡地社區邊坡潛勢災害環境風險評估模式與準則之建置與應用:紅外線偵測技術應用於高雄坡地社區邊坡穩定性監測與預警參數值之訂定。
    黃安斌、林志平、廖志中、潘以文、湯士弘、簡旭君、吳政達、葉致翔、盧吉勇、楊培熙(2002),先進邊坡監測系統之研發,中國土木水利學會會刊,第二十九卷第二期,第65-78頁。
    萬絢、張士勳、王依蘋、劉啟清(2016),以高光譜影像和光達建置高速公路邊坡隆起和下陷監控。中華水土保持協會,47(4),第185-190頁。
    Broms, B. B. (1964). “Lateral resistance of piles in cohesive soils.” Journal of the Soil Mechanics and Foundations Division, 90(2), pp. 123-156.
    Canadian Geotechnical Society. (2007). Canadian Foundation Engineering Manual 4th Edition. Richman: BiTech Publisher.
    Chang, Y.L. (1937) “Discussion on “lateral pile-loading tests,” by Feagin, Trans. ASCE, pp. 272-278.
    Clough, G.W., and Tsui, Y. (1974). “Performance of tied-back walls in clay.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 100, pp. 1259-1273.
    Coulomb, C. A. (1776). “Essai sur une Application des Régles de Maximis et Minimum à quelques roblemes de Statique Relatifs à l’Architecture.” Mem. Acad. Roy. Des Sciences, Paris, Vol. 3, p. 38.
    Hetenyi, M. (1946). “Beams on elastic foundation.” Ann Arbor: University of Michigan Press.
    Huang, A.B., Lee, J.T., Ho, Y.T., Chiu, Y.F., and Cheng, S.Y. (2012). “Stability Monitoring of Rainfall Induced Deep Landslides Through Pore Pressure Profile Measurements.” Soil and Foundations, 52(4), pp. 737-747.
    Huang, A.B., and Yu, H.S. (2017). Foundation Engineering Analysis and Design. CRC Press, Boca Raton, FL, USA.
    Kurahashi, T., Yajima, Y., & Sasaki, Y. (2008). “Landslide disasters and hazard maps along national highways in Japan.” The 2nd East Asia Landslides Symposium, pp.22-23.
    Rankine, W.J.M. (1857). “On stability on loose earth.” Philosophical transactions of Royal Society of London, (147), pp. 9-27.
    Reese, L.C., Cox, W.R., and Koop, F.D. (1974). “Analysis of laterally loaded piles in sand.” Proceedings, Offshore Technical Conference, Dallas, Texas, Paper No. 2080, pp. 95-105.
    Reese, L.S., Wang, S.T., Arrellaga, J.A., and Vasquez, L. (2013). PYWALL – Technical Manual – a program for the analysis of flexible retaining structures, ENSOFT, Inc., Austin, Texas, USA, p. 137.
    Reese, L.S., Wang, S.T., Arrellaga, J.A., and Vasquez, L. (2019). PYWALL – Technical Manual – a program for the analysis of flexible retaining structures, ENSOFT, Inc., Austin, Texas, USA.
    Richart, F. E. (1957). “Analysis for Sheet-Pile Retaining Wall.” Transactions, ASCE, Vol. 122, pp. 1113-1132.
    Rowe, P. W. (1955). “A Theoretical and Experimental Analysis of Sheet Pile Walls.” Proceedings, Institution of Civil Engineers, London, Paper No. 5989, pp. 32-69.
    Terzaghi, K. (1950). “Mechanism of Landslides.” Application of Geology to Engineering Practice (Berkey Volume), Geological Society of America, New York, pp. 83-123.
    Terzaghi, K., Peck, R. B., & Mesri, G. (1967). Soil Mechanics in Engineering Practice, John Wiley & Sons. Inc., New York.
    Uchimura, T., Towhata, I., Wang, L., & Seko, I. (2008). “Simple and low-cost wireless monitoring units for slope failure.” In: Proc. of the First World Landslide Forum, International Consortium on Landslides (ICL), Tokyo, pp. 611-614.
    US NAVY. (1982). Foundations and Earth Structures-NAVFAC Design Manual 7.2. Naval Facilities Engineering Command, U.S. Government Printing Office, Washington, D. C.
    Varnes, D.J. (1978). “Slope movement types and processes.” In: R.L. Schuster and R.J. Kfizek (Editors), Landslides- Analysis and control. Transportation Research Board, National Academy of Sciences, Washington, DC, Special Report 176, pp. 11-33.
    Winkler, E. (1867). “Theory of elasticity and strength.” Dominicus Prague.

    下載圖示
    2024-08-01公開
    QR CODE