簡易檢索 / 詳目顯示

研究生: 林孝柏
Lin, Hsiao-Po
論文名稱: 少層石墨於形變下的電子結構
Electronic structures of few-layer graphenes under deformation
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 半金屬-半導體轉換少層石墨電子結構形變效應
外文關鍵詞: few-layer graphenes, semimetal-semiconductor transition, deformation effect, electronic structure
相關次數: 點閱:79下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文之中,我們以緊束模型研究少層石墨(~1-4層)的電子結構,這些不同石墨系統的電子性質將隨著層數、堆疊方式、沿armchair以及zigzag方向應力強度而有著特性上的變化。首先,「層和層間交互作用效應」會劇烈地改變能帶色散關係、能帶寬度,並且產生新的邊緣能態。電子性質會反應在態密度,線性能帶在態密度上是有限值,邊緣能態反應在態密度上則是對數發散或開根號發散的峰。石墨晶格在外加應力下的「形變效應」適用於彈性理論,沿x軸應變量,在y軸和z軸相應不同應變量。根據Harrison’s rule,在形變下,同層以及層和層間的交互作用隨碳-碳原子間的距離而調整。
    單層石墨於形變下線性能帶交點位移,但仍是半導體特質,形變改變雙層AB的能帶特性,造成半金屬-半導體轉換,三、四層的少層石墨因層數增加,堆疊結果越趨複雜。另外,少層石墨系統沿armchair方向拉長(壓縮),幾何結構類似沿zigzag方向壓縮(拉長)。「形變效應」改變同層與層間碳原子的交互作用,引起大量的費米動量位移,強烈改變低能的能帶分佈,變化自由載子的濃度,形變也導致態密度圖上出現明顯的峰。這些預測出的電子性質可由掃瞄穿遂譜驗證。

    In this thesis, the electronic structures of few-layer graphenes (~1-4 layers) are investigated by the tight-binding model. They are significantly affected by the number of layers, the stacking sequences, and the intensity of stress along armchair and zigzag directions. The effects of interlayer interactions would cause the drastic changes in the energy dispersions, the band widths, and the new band-edge states. The electronic properties could reflect in the density of states (DOS) per unit area. The linear subbands correspond to finite values in DOS. The band-edge states exhibit the peaks of logarithmic divergences or square-root divergences. The deformation effects of graphene lattices under external stress are applied to the elasticity theory. The strain along x-axis is relevant to different values along y-axis and z-axis. Both intralayer and interlayer hopping integrals would be adjusted by the deformed C-C bond lengths, according to the Harrison’s rule.
    The linear bands intersection of graphene shifts under deformation, but it still remains zero-gap semiconductors. The deformation influences energy bands and causes the semimetal-semiconductor transition in AB-stacked bilayer graphene. The stacking consequence would be more complicated in tri- and quadri- layers due to the increasing number of layers. In addition, the geometric structures of the tension (compression) along armchair direction are similar to those of the compression(tension) along zigzag direction for few-layer graphenes. The deformation effects would alter intralayer and interlayer hopping integrals between C-C atoms, the large shift of the Fermi momenta, the strong modification of low band structures, and the change of free carrier concentrations. It also leads to the prominent peaks in DOS. The predicted electronic properties could be verified by the scanning tunneling spectroscopy.

    中文摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 第一章 緒論 1 第二章 理論和方法 3 2.1 層和層間交互作用效應 3 2.1.1 單層石墨幾何結構 3 2.1.2 少層石墨幾何結構 5 2.2 形變效應 10 2.2.1 單層石墨於形變下的幾何結構 11 2.2.2 少層石墨於形變下漢米爾頓矩陣 17 第三章 結果討論 21 3.1 幾何結構對少層石墨電子性質的影響 21 3.2 單層石墨沿armchair和zigzag方向形變 29 3.2.1 單層石墨沿armchair方向形變之解析解 32 3.3 AB沿armchair和zigzag方向形變 46 3.4 ABA、ABAB沿armchair方向形變 54 3.5 ABC、ABCA沿armchair方向形變 60 第四章 結論 68 References 70

    1. S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354, 56-58, (1991)
    2. R. Satio, G. Dresselhaus, and M.S. Dresselhaus, “Physical properties of carbon nanotubes”, Imperical College Press, London (1998)
    3. J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, A. P. Douvalis, and I. S . Sanders, “Ferromagnetism of a graphite nodule from the Canyon Diablo meteorite”, Nature 420, 156-159 (2002)
    4. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, “Direct evidence for atomic defects in graphene layers”, Nature 430, 870-873 (2004)
    5. E. T. Jensen, R. E. Palmer, W. Allison, and J. F. Annett, “Temperature-dependent plasmon frequency and linewidth in a semimetal”, Phys. Rev. Lett. 66, 492-495 (1991)
    6. P. Laitenberger and R. E. Palmer, “Plasmon dispersion and damping at the surface of a semimetal”, Phys. Rev. Lett. 76, 1952-1955 (1996)
    7. H. Venghaus, Phys. Status Solidi B 81, 221 (1977)
    8. T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A. Rinzler, and R. E. Smalley, “Localized and delocalized electronic states in single-wall carbon nanotubes”, Phys. Rev. Lett. 80, 4729-4732 (1998)
    9. P. R. Wallace, “The band theory of graphite”, Phys. Rev. 71, 622-634 (1947)
    10. J. W. McClure, “Diamagnetism of graphite”, phys. Rev. 104, 666-671 (1956)
    11. J. C. Charlier, X. Gonze, and J. P. Michenaud, ”First-principles study of the electronic properties of graphite”, Phys. Rev. B 43, 4579-4589 (1991)
    12. J. C. Charlier and J. P. Michenaud, “Tight-binding model for the electronic properties of simple hexagonal graphite”, Phys. Rev. B 44, 13237-13249 (1991)
    13. J. C. Charlier, J. P. Michenaud, and X. Gonze, “First-principles study of the electronic properties of simple hexagonal graphite”, Phys. Rev. B 46, 4531-4539 (1992)
    14. J. C. Charlier, J. P. Michenaud, and Ph. Lambin, “Tight-bindng density of electronic states of pregraphitic carbon”, Phys. Rev. B 46, 4540-4543 (1992)
    15. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306, 666-669 (2004)
    16. J. S. Bunch, Y. Yaish, M. Brink, Bolotin, and P. L. McEuen, “Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots”, Nano Lett. 5, 287-290 (2005)
    17. C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang and M. F. Lin, “Magnetoelectronic properties of a graphite sheet”, Carbon 42, 2975- 2980 (2004)
    18. F. Guinea, A. H. Castro Neto and N. M. R. Peres, “Electronic states and Landau levels in graphene stacks”, Phys. Rev. B 73, 245426 (2006)
    19. F. L. Shyu and M. F. Lin, “Plasmons and optical properties of semimetal graphite”, J. Phys. Soc. Jpn. 69, 3781-3784 (2000)
    20. J. H. Ho, C. P. Chang and M. F. Lin, “Electronic excitations of the multilayered graphite”, Phys. Lett. A 352, 446-450 (2006)
    21. M. L. Sadowski, G. Martinez, M. Potemski, C. Berger and W. A. de Heer, “Landau level spectroscopy of ultrathin graphite layers”, Phys. Rev. Lett 97, 266405 (2006)
    22. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman spectrum of graphene and graphene layers”, Phys. Rev. Lett 97, 187401 (2006)
    23. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim, “Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene”, Nature Physics 2, 177-180 (2006)
    24. Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene”, Nature 438, 201-204 (2005)
    25. D. Tekleab, D.L. Carroll, G.G. Samsonidze, B.I. Yakobson, “Strain-induced electronic property heterogeneity of a carbon nanotube”, Phys. Rev. B 64, 035419 (2001)
    26. R. Heyd, A. Charlier, E. Mcrae, “Uniaxial-stress effects on the electronic properties of carbon nanotubes”, Phys. Rev. B 55, 6820-6823 (1997)
    27. L. Yang, M. P. Anantram, J. Han, J. P. Lu, “Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain”, Phys. Rev. B 60, 13874-13878 (1999)
    28. L. Yang and J. Han, “Electronic structure of deformed carbon nanotubes”, Phys. Rev. Lett. 85, 154-157 (2000)
    29. C. P. Chang, Y. H. Chen, F. L. Shyu, R.B. Chen, and M. F. Lin, “Uniaxial-stress effects on electronic structures of nanographite ribbons”, Physica E 18, 509-522 (2003)
    30. C. P. Chang, B. R. Wu, R. B. Chen, and M. F. Lin, “Deformation effect on electronic and optical properties of nanographite ribbons”, J. Appl. Phys. 101, 063506 (2007)
    31. B. T. Kelly, “Physics of Graphite”, Applied Science, London (1981)
    32. W. A. Harrison, “Electronic Structure and the Properties of Solids”, Dover, New York (1989)

    下載圖示 校內:立即公開
    校外:2007-08-02公開
    QR CODE