簡易檢索 / 詳目顯示

研究生: 盧永鴻
Lu, Yong-Hong
論文名稱: 黑液混摻廢油泥的燃燒特性分析
Co-Combustion Characteristics of Black Liquor and Waste Oil Sludge
指導教授: 林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 93
中文關鍵詞: 黑液廢油泥熱重分析傅立葉轉換紅外線光譜法單顆燃燒
外文關鍵詞: Black liquor, Waste oil sludge, TG-FTIR, Single pellet combustion
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract II 致謝 III Table of Contents IV List of Tables VI List of Figures VII Nomenclature X 1. Introduction 1 1.1 Black Liquor Production and Treatment 2 1.2 Oil Sludge Production and Treatment 3 1.3 Co-Combustion of Biomass 4 1.4 Motivation and Objective of the Study 6 2. Materials and Methodology 7 2.1 Sample Pretreatment 7 2.2 Composition Analysis 8 2.2.1 Proximate Analysis 8 2.2.2 Ultimate Analysis 9 2.2.3 Heating Value 10 2.3 Thermogravimetric Analysis 10 2.4 Fourier Transform Infrared Spectroscopy 11 2.5 Synergistic Effect Analysis 12 2.6 Ignition and Burnout Temperature 13 2.7 Combustion Index Analysis 14 2.8 Kinetic Parameters Analysis 15 2.9 Single Pellet Combustion 17 2.9.1 Pellet Size and Fabrication 17 2.9.2 Experimental Setup 17 2.10 XRD Analysis 19 2.11 XRF Analysis 20 2.12 GC-MS Analysis 20 3. Results and Discussion 21 3.1 Fuel Properties 21 3.2 Thermogravimetric Analysis 23 3.2.1 Combustion of Black Liquor, Oil Sludge, and Their Blends 23 3.2.2 Synergistic Effect Analysis 27 3.2.3 Combustion Index Analysis 28 3.2.4 Kinetic Parameters Analysis 29 3.3 Fourier Transform Infrared Spectroscopy 30 3.4 Single Pellet Combustion 33 3.4.1 Gas Concentration Analysis of the Black Liquor and Oil Sludge Blends 33 3.4.2 Combustion Characteristics Analysis of the Black Liquor and Oil Sludge Blends 42 4. Conclusion 46 5. References 48 6.1 Tables 51 6.2 Figures 58 Appendix 83

    1. 經濟部能源局, 2016年能源科技研究發展白皮書,第四節. 2016.
    2. 台灣區造紙工業同業公會, 歷年紙張及紙板統計. [Online]Available:https://wwwpaperorgtw/zh-tw/statistics/statistics/.
    3.行政院環境保護署, 重點事業廢棄物-一般污泥之處理方式. [Online] Available: https://dataepagovtw/dataset/wr_p_182/resource/192b7582-7fa7-4858-8c3f-c7e00319145e.
    4. Bajpai P, Pulp and paper industry: chemicals: Elsevier; 2015.
    5. Niemi H, Lahti J, Hatakka H, Kärki S, Rovio S, Kallioinen M, Mänttäri M, Louhi‐Kultanen M, Fractionation of organic and inorganic compounds from black liquor by combining membrane separation and crystallization. Chemical Engineering & Technology 2011, 34(4):593-598.
    6. Alén R, Sjöström E, Suominen S, Application of ion‐exclusion chromatography to alkaline pulping liquors; separation of hydroxy carboxylic acids from inorganic solids. Journal of Chemical Technology & Biotechnology 1991, 51(2):225-233.
    7. Cao C, Xie Y, Mao L, Wei W, Shi J, Jin H, Hydrogen production from supercritical water gasification of soda black liquor with various metal oxides. Renewable Energy 2020, 157:24-32.
    8. Kim G-H, Park S-J, Um B-H, Response surface methodology for optimization of solvent extraction to recovery of acetic acid from black liquor derived from Typha latifolia pulping process. Industrial Crops and Products 2016, 89:34-44.
    9. da Silva PS, Engblom M, Brink A, Hupa L, Fuel and thermal NO formation during black liquor droplet pyrolysis with envelope flame. Fuel 2020, 271:117512.
    10. Alén R, Swelling behaviour of kraft black liquor and its organic constituents. Bioresource technology 1994, 49(2):99-103.
    11. Chen C, Alén R, Lehtimäki E, Louhelainen J, A salt-induced mechanism for the swelling of black liquor droplet during devolatilization. Fuel 2017, 202:338-344.
    12. 司洪濤, 王裕寬, 廢水中油泥資源化新技術與商業化成功案例. [Online] Available: https://proj.ftis.org.tw/eta/epaper/PDF/ti102-2.pdf
    13. Hui K, Tang J, Lu H, Xi B, Qu C, Li J, Status and prospect of oil recovery from oily sludge: A review. Arabian Journal of Chemistry 2020.
    14. Zubaidy EA, Abouelnasr DM, Fuel recovery from waste oily sludge using solvent extraction. Process Safety and Environmental Protection 2010, 88(5):318-326.
    15. Wang J, Han X, Huang Q, Ma Z, Chi Y, Yan J, Characterization and migration of oil and solids in oily sludge during centrifugation. Environmental technology 2018, 39(10):1350-1358.
    16. Ramirez D, Collins CD, Maximisation of oil recovery from an oil-water separator sludge: Influence of type, concentration, and application ratio of surfactants. Waste Management 2018, 82:100-110.
    17. Jean, D. S., Lee, D. J., & Wu, J. C. S., Separation of oil from oily sludge by freezing and thawing. Water research 1999, 33(7):1756-1759.
    18. Cheng S, Chang F, Zhang F, Huang T, Yoshikawa K, Zhang H, Progress in thermal analysis studies on the pyrolysis process of oil sludge. Thermochimica acta 2018, 663:125-136.
    19. Ramaswamy B, Kar D, De S, A study on recovery of oil from sludge containing oil using froth flotation. Journal of environmental management 2007, 85(1):150-154.
    20. Wang Z, Gong Z, Wang Z, Fang P, Han D, A TG-MS study on the coupled pyrolysis and combustion of oil sludge. Thermochimica acta 2018, 663:137-144.
    21. Zhao R, Qin J, Chen T, Wang L, Wu J, Experimental study on co-combustion of low rank coal semicoke and oil sludge by TG-FTIR. Waste Management 2020, 116:91-99.
    22. Cheng S, Zhang H, Chang F, Zhang F, Wang K, Qin Y, Huang T, Combustion behavior and thermochemical treatment scheme analysis of oil sludges and oil sludge semicokes. Energy 2019, 167:575-587.
    23. Sankaran S, Pandey S, Sumathy K, Experimental investigation on waste heat recovery by refinery oil sludge incineration using fluidised‐bed technique. Journal of Environmental Science & Health Part A 1998, 33(5):829-845.
    24. Liu J, Jiang X, Zhou L, Wang H, Han X, Co-firing of oil sludge with coal–water slurry in an industrial internal circulating fluidized bed boiler. Journal of Hazardous Materials 2009, 167(1-3):817-823.
    25. Gong Z, Wang L, Wang Z, Wang Z, Xu Y, Sun F, Sun Z, Liu Z, Zhu L, Experimental study on combustion and pollutants emissions of oil sludge blended with microalgae residue. Journal of the Energy Institute 2018, 91(6):877-886.
    26. Sezer S, Kartal F, Özveren U, The investigation of co-combustion process for synergistic effects using thermogravimetric and kinetic analysis with combustion index. Thermal Science and Engineering Progress 2021, 23:100889.
    27. Qi X, Song G, Song W, Yang S, Lu Q, Combustion performance and slagging characteristics during co-combustion of Zhundong coal and sludge. Journal of the Energy Institute 2018, 91(3):397-410.
    28. Ulusoy B, Anicic B, Lin W, Lu B, Wang W, Dam-Johansen K, Wu H, Interactions in NOX chemistry during fluidized bed co-combustion of residual biomass and sewage sludge. Fuel 2021, 294:120431.
    29. Cassel B, Menard K, Shelton C, Earnest C, Proximate analysis of coal and coke using the STA 8000 Simultaneous Thermal Analyzer. PerkinElmer Application Note 2012.
    30. Fan C, Yan J, Huang Y, Han X, Jiang X, XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char. Fuel 2015, 139:502-510.
    31. Gao N, Li A, Quan C, Du L, Duan Y, TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. Journal of Analytical and Applied Pyrolysis 2013, 100:26-32.
    32. Mau V, Gross A, Energy conversion and gas emissions from production and combustion of poultry-litter-derived hydrochar and biochar. Applied Energy 2018, 213:510-519.
    33. Wang C, Wu Y, Liu Q, Yang H, Wang F, Analysis of the behaviour of pollutant gas emissions during wheat straw/coal cofiring by TG–FTIR. Fuel Processing Technology 2011, 92(5):1037-1041.
    34. Xu T, Huang X, Study on combustion mechanism of asphalt binder by using TG–FTIR technique. Fuel 2010, 89(9):2185-2190.
    35. Qin L, Han J, Zhao B, Chen W, Wan Y, Synergistic effect for co-coking of sawdust and coal blending based on the chemical structure transformation. Journal of the Energy Institute 2020, 93(6):2215-2227.
    36. 彭承祖, 趙怡欽, 棕櫚空果串/煤炭混燒之純氧燃燒特性研究. 2018.
    37. Ren X, Meng J, Moore AM, Chang J, Gou J, Park S, Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils. Bioresource technology 2014, 152:267-274.
    38. Lu J-J, Chen W-H, Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Applied Energy 2015, 160:49-57.
    39. Peng W, Wu Q, Tu P, Zhao N, Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresource Technology 2001, 80(1):1-7.
    40. Niu Y, Tan H, Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Progress in Energy and Combustion Science 2016, 52:1-61.
    41. 經濟部工業局, 工業污染防治手冊_造紙工廠廢水汙染防治. 1997. [Online] Available:https://reurl.cc/7rbX9Q

    無法下載圖示 校內:2026-07-08公開
    校外:2026-07-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE