| 研究生: |
周俊良 chou, chun-liang |
|---|---|
| 論文名稱: |
以三維震動平臺探討適合正常兒童之
三維震動震幅及頻率與震動訓練對正常兒童下肢鐘擺測試的影響 Investigation of the Proper Vibrational Amplitude and Frequency of 3-D Vibration training on normal children and the Effects of Vibration Taining base on Leg Pendulum Testing Evaluaton |
| 指導教授: |
鍾高基
Chung, Kao-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 感覺統合 、肌肉痙攣 、神經肌肉控制理論 、震動刺激 |
| 外文關鍵詞: | neuromuscular, vibration stimulation, spastic, Sensory Integration |
| 相關次數: | 點閱:110 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
感覺統合是一種神經處理的過程,中樞神經將來自身體各部位的神經系統以及環境的感覺刺激訊息加以整理組織後,為應付環境的需求,而做出適應性且有效的動作反應。根據神經肌肉控制理論,正常肌肉張力的產生與功能性的動作是透過一套精緻而協調的感覺輸入(包括前庭系統、本體感覺與外在感覺),經由相當複雜的中樞神經系統處理及週邊動作輸出而達成。學者Fay(1954)、Bobath(1963)、Ayres(1972)、Knott及Voss(1984)使用震動、旋轉的方式作為療程的內容,結果顯示這種治療的方式有正常化肌肉張力、改善身體姿勢及訓練平衡的效果。
由於適當的震動刺激能有效的降低神經肌肉病變兒童的肌肉張力,以改善患者痙攣的現象與姿勢的控制,但目前仍未知適合兒童震動刺激之震幅與頻率,因此本研究將探討正常兒童適當的三維(前後、左右及上下)震動震幅與頻率,以作為臨床不同震幅與頻率的震動訓練之依據,及探討震動刺激對正常兒童下肢鐘擺測試特徵參數的變化,如擺盪次數、穩定時間、放鬆指數、阻尼自然頻率與阻尼比等,以作為正常兒童下肢鐘擺測試的基礎資料,提供往後探討震動刺激對腦性麻痺患者下肢肌肉張力痙攣影響的依據。實驗方法:在第一階段實驗中,利用本實驗室研發的震動平臺之可調整震幅與頻率特性,在不同震幅下調整頻率的輸入以找出正常兒童可承受之最大頻率值。第二階段的實驗採用第一階段的實驗結果,輸入不同方向的的頻率與震幅的組合後進行15分鐘的震動訓練,並在進行完一個方向的震動訓練後做一次鐘擺測試評估,最後再探討震動訓練對正常兒童鐘擺測式的影響。
結果與結論:第一階段的實驗結果顯示在前後與左右的震動頻率與震幅組合為0.6Hz與5cm,而上下的震動頻率與震幅組合為0.8Hz與5cm。第二階段的實驗結果顯示在左右腳鐘擺參數的比較中,發現有明顯差異的參數中左腳的數值幾乎比右腳的大。而在接受震動訓練前後之鐘擺測試參數值改變的幅度不大,但發現左右腳的平均值在最後一次的鐘擺測試(post-test)中其參數值均比前幾次鐘擺測試進步,尤其是最大下擺角度、最高回彈角度、軌跡上升最大速度、軌跡上升平均速度、軌跡下降最大速度、軌跡下降平均速度與放鬆指數。而與學者Fee及Samworth所研究的結果相比較之下發現腦性麻痺患者的最大下擺角度、穩定角度、軌跡上升速度與擺盪數目參數值均較小而阻尼自然頻率、阻尼係數與曲面下面積參數值都較大,造成此現象原因是由於腦性麻痺患者肌肉痙攣所影響。
未來研究方向:首先增加受試者人數至20~30人的取樣數目,以減少實驗結果的變異性與提高結果的信賴度:第二步為求日後實驗條件的一致性,能設計機械式釋放系統與同步收集鐘擺軌跡圖程式,以減少人為的疏失與增加實驗的準確性;最後一步在未來將配合臨床醫療人員應用本三維震動平台、鐘擺測試與肌電系統對腦性麻痺患者進行系統性的療程試驗與評估。
Powered wheelchairs (PWCs) and scooters are the major mobility device for the neuromuscular skeletal impairment, elderly or chronic illness. Current design and development of the powered mobility device are often lacking of systematic consideration on structure and kinetics/dynamics of propulsion as well as power system (motor, Controller), and integrated design with appropriate components matching. Therefore, it is always lead to poor efficiency and performance of PWCs.
This research was to design and develop a motor testing system and a PWC/scooter testing system for providing motor characteristics (voltage, current, torque, speed, efficiency) in appropriate power system selection and information to improve digital controller design, and for performance and efficiency evaluation of PWCs and scooters, respectively. The specific aims of this research included: Design and Development of a motor testing system consisting of powder break, torque meter, tachometer, voltage and current sensors, to measure power characteristics. The powder break is used to simulate working loads on motor, and the speed, voltage, current, torque parameters are measured and evaluated. The motor efficiency is calculated by (Torque Speed/Voltage Current); Design and Development of a PWC/scooter testing system, consisting of powder break, actuator, tachometer, voltage, current and temperature sensors, to measure functional performance. Static and dynamic testing on climbing slope simulation and differential simulation and working load simulation are conducted through this system, and the parameters of PWC/scooter are measured and evaluated for the performance. The collected data provide useful information to consumers and manufactures.
Calibration of the motor testing system shows that the powder break, tachometer and torque meter are functional well with very high accuracy and consistency. The PWC/scooter testing system functions very well to provide static and dynamic testing on powered wheelchairs and scooters. Both systems are useful to provide power characteristics of PMDC motor and functional performance of powered wheelchairs and scooters.
The results of PMDC motors testing indicate that there are significant difference in the maximum torque output and speed between powered wheelchair and scooter motors, and provide the characteristics of each motor under different applied voltages and working loads. The PWC/Scooter testing system is valuable to provide more detailed data than those supplied from manufactures. The information resulted from two testing system will be used to improve PWC design lead to more independence for the person with disabilities.
【1】 盧慶春,腦性麻痺的現在診斷與治療,1993
【2】 周威廷,設計三維震動平臺以探討對腦性麻痺兒童肌肉張力平衡協調的影響,成功大學醫學工程研究所碩士論文,2003
【3】 J.W. Lance: Symposium Synosium. In R.G.Feldman, R.R. Yung, W.P. Koella(eds): Spasticity:Disordered Motor Control. Chicago, Year Book Publishers,1980,pp485-494
【4】 林志杰,半側偏癱瘓者步行前的動靜態平衡訓練及評估,國立成功大學醫學工程研究所碩士論文,1996
【5】 高愛德,連淑華:腦性麻痺物理治療原理與方法,屏東基督教勝利之家,1988
【6】 Shereen D. Farber, Neurehabilitation:a Multisensory Approach,Saunder,1982
【7】中華民國傷健策騎協會 [Riding for the Disabled Association of the Republic of China (RDAof ROC)],1998
【8】Faber Schamhardt, van Weeren Johnston, Roepstorff & Bameveld : Basic Three-Dimensional Kinematics of the Vertebral Column of Horses Walking on a Treadmill. American Journal of Veterinary Research 61(4):399-408,2000
【9】黃偉耕,正常兒童之步態,國立成功大學醫學工程研究所碩士論文,1995
【10】Barbara Heine, Hippotherapy:A Multisystem Approach to the Treatment of Neuromuscular Disorders, Australian Physiotherapy,Vol.43,NO.2,1997,145-149
【11】MacPhail HE, Kramer JF. Effect of Isokinetic Strength-Training on Functional Ability and Walking Efficiency inAdolescents with Cerebral Palsy. Dev Med Child Neurol 1995; 37: 763-775
【12】Samworth, K.T., Fee, J.W., Jr., Measuring Leg Motion Changes Following Vertical Vestibular Stimulation: a Case Study, Proceedings of the `94 Annual RESNA Conference, June 1994.
【13】James W. Fee Jr. and Katherine T. Samworth,Passive Leg Motion
Changes in Cerebral Palsied Children After Whole Body Vertical
Accelerations,IEEE Transactions on Rehabilitation Engineering,
Vol.3,NO.2,June,1995
【14】Nancy H McGibbon,Effect of an Equine-Movement Therapy Program on Gait, Energy Expenditure, and Motor Function in Children with Spastic Cerebral Palsy:a Pilot Study, Developmental Medicine&Child Neurolog 1998,NO.40:754-762
【15】T. Bajd and B. Bowmant,Testing and Modellign of Spasticity ,J.Biomed.Eng.1982,Vol.4,April
【16】T. Bajd and L. Vodovnik, Pendulum Testing of Spasticity,
J. Biomed.,Eng.,Vol. 6,pp.9-16,1984
【17】L.Vodovnik, B. R. Brown , and T. Bajd, Dynamics of Spastic
Knee Joint, Med & Biol. Eng. & Comput.,1984,22,63-69
【18】唐永雯,半側偏癱患者的痙攣量化評估:利用下肢被動鐘擺測
試與肌電圖,國立成功大學醫學工程研究所碩士論文,1998