| 研究生: |
林家慶 Ching, Jia |
|---|---|
| 論文名稱: |
有機金屬氣相磊晶法成長三族氮化物半導體及相關光電元件之研究 The Study of III-Nitride Semiconductors and Related Optoelectronic Devices Grown by Metalorganic Vapor Phase Epitaxy |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin 張守進 Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 194 |
| 中文關鍵詞: | 有機金屬氣相磊晶 |
| 外文關鍵詞: | metalorganic vapor phase epitaxy |
| 相關次數: | 點閱:53 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用有機金屬氣相磊晶法成長三五族氮化物半導體材料並製作相關之光電元件。首先,我們使用偏離c軸方向1度的藍寶石基板生長氮化鎵可獲得磊晶品質較佳、缺陷較少之磊晶薄膜,其蝕刻陷斑密度為1.2×107 cm-2;從變溫霍爾量測實驗發現,在1度傾斜角度藍寶石基板上的氮化鎵磊晶層只存在一個活化能值,並無其他缺陷相關之活化能數值。
就氮化銦磊晶而言,所有試片表面均為網狀結構,並且當隨著成長溫度增加時,表面變得更加粗糙,而生長速率亦隨之增加,在675 oC生長之氮化銦磊晶薄膜,其生長速率可達到470 nm/hr;而在625 oC生長的氮化銦磊晶層可達到最高的電子遷移率為1300 cm2/Vs,以及最低的載子濃度為4.6 × 1018 cm-3。另一方面,在高成長壓力生長的氮化銦試片,其表面型態呈現出密集扭曲的晶粒型態,同時在低壓成長的試片在介面處有空隙存在。在500 mbar生長的氮化銦磊晶層可達到最高的電子遷移率為1415 cm2/Vs,以及載子濃度為4.2 × 1018 cm-3。另外,對於在高五三比條件下生長的氮化銦試片,其表面型態較為平坦,同時可提高側向生長速率。在五三比為15200生長的氮化銦磊晶層可達到最高的電子遷移率為1333 cm2/Vs,其載子濃度為5.9 × 1018 cm-3。
就氮化鎵發光二極體方面,在1度偏角度藍寶石基板上製作的氮化銦鎵磊晶薄層有較均勻的銦原子分佈,並且在偏角度基板上製作的發光二極體有較小的暗電流。因此,利用偏角度藍寶石基板生長的發光二極體有較強的發光強度,並且隨著注入電流增加,發光波長幾乎不會改變。
在氮化鎵紫外光偵檢器方面,首先在氮化鎵p-i-n結構偵檢器的吸收層中間插入一層低溫氮化鎵插入層,由於載子累增效果的影響,此偵檢器可在一個小電場(~0.4 MV/cm)的情況下增加響應度;同時也觀察到13倍的光電流增益以及較大的離子化係數(α=3.1×105 cm-1);因此,具有低溫氮化鎵插入層的偵檢器可達到2.27 A/W高峰值響應度。另一方面,具有低溫氮化鋁插入層的偵檢器即使在40 V高逆偏壓仍有非常小的暗電流(2~3 × 10-11 A)。雖然,在氮化鋁/氮化鎵介面的高位能障在低逆偏壓時會稍微降低偵檢器的響應度,但因為暗電流非常小的關係,即使在高逆偏壓下,仍有很高的紫外光對可見光的拒斥比。另外,利用二氧化鈦奈米粒子粗化表面的氮化鎵p-i-n偵檢器,其響應度與外部量子效率可提升60%;並且可增強不同入射角度的光吸收量;因此,具有粗化表面的偵檢器可達到9.2×1013 cmHz1/2W-1的高偵測度。
在氮化鎵光伏元件方面,隨著氮化銦鎵磊晶層銦含量的增加,磊晶品質亦隨之降低。以我們的磊晶系統,可以達到銦含量60 %的氮化銦鎵磊晶生長。然而,對氮化物太陽電池磊晶而言,氮化銦鎵分解與相分離的現象為主要問題。因此,我們製作氮化物光伏元件時以低銦成份的氮化銦鎵磊晶層作為吸收層,此光伏元件的輸出功率密度與填充因子分別為0.3 mW/cm2和70%。
In this dissertation, we prepared III-V nitride semiconductor materials and related optoelectronic devices by using metalorganic vapor phase epitaxy. First, the better crystalline quality and less dislocations of GaN epitaxial layers can be achieved by using 1o off-axis c-plane sapphire substrates. It was found that the etching pits density of GaN films on vicinal substrates is as low as 1.2×107 cm-2. From temperature-dependent Hall measurement, it was found that only one activation energy can be found from the GaN epitaxial layers grown on 1° tilted sapphire substrate, and no other defect-related activation energy can be found.
For InN epitaxy, it was found that surfaces of these samples were all reticular and the sample surface became rougher as we increased the growth temperature. It was also found that growth rate increased with increasing growth temperature and the growth rate could reach 470 nm/hr for the InN epitaxial layer grown at 675oC. Furthermore, it was found that we achieved the highest mobility of 1300 cm2/Vs and the lowest carrier concentration of 4.6 × 1018 cm-3 from the InN epitaxial layer grown at 625oC. On the other hand, it was found that surface morphologies were densely twisted grains for InN samples grown at high pressures while voids exist in the samples grown at low pressures. It was also found that we achieved a mobility of 1415 cm2/Vs and a carrier concentration of 4.2 × 1018 cm-3 from the InN epitaxial layer grown at 500 mbar. In addition, it was found that the surface morphologies of InN samples become smooth at high V/III ratio condition. It was also found that the lateral growth can be enhanced during the InN epitaxy under high V/III ratio. Furthermore, it was found that the mobility of 1333 cm2/Vs with corresponding the concentration of 5.9 × 1018 cm-3 can be achieved from the InN sample grown at the V/III ratio of 15200.
For GaN-based LEDs, it was found that indium atoms distributed much more uniformly in the thin InGaN epitaxial layers prepared on 1o off-axis sapphire substrates. It was also found that the dark current of LED grown on vicinal cut sapphire substrate is smaller. Furthermore, it was found that we could achieve stronger EL intensity with emission wavelength much less sensitive to injection current from the LEDs with vicinal cut sapphire substrate.
For GaN ultraviolet (UV) photodiodes, we first prepared GaN p-i-n structures with a low-temperature (LT) GaN interlayer inserted in the middle of absorption layer. It was found that the responsivity of the photodiode with LT-GaN interlayer can be enhanced at a small electric field (~0.4 MV/cm) due to the carrier multiplication effect. The UV photocurrent gain of 13 and large ionization coefficient (α=3.1×105 cm-1) were also observed in the detector with LT-GaN interlayer. Furthermore, we can achieve a large peak responsivity of 2.27 A/W from the photodiode with LT-GaN interlayer. On the other hand, the photodiodes with a LT-AlN interlayer reveal a significantly low dark current at a range of 2~3 × 10-11 A even under a very high reverse bias of 40 V. Although the high potential barrier at AlN/GaN interface would slightly reduce the responsivity of photodetector under low reverse biases, the high UV-to-visible rejection ratio of the photodetector with LT-AlN interlayer could be achieved under high reverse biases due to its very low dark current. Besides, the GaN p-i-n photodiodes with a TiO2 nano-particles roughened surface show a 60% improvement of responsivity and external quantum efficiency. It was also found that light absorption can be enhanced from various incident angles by the TiO2 roughened surface. Furthermore, the high detectivity of 9.2×1013 cmHz1/2W-1 can be achieved from the photodiode with a rough surface.
For GaN-based photovoltaic devices, it was found that crystalline quality of InGaN epitaxial layers reduced with increasing In composition. The In composition of 60% in InGaN epitaxial layers can be achieved by our epitaxial system. However, dissociation and phase separation of InGaN are the main issues for nitride-based solar cell epitaxy. Thus the InGaN epitaxial layers with low In composition were used as absorption layer for fabricating nitride-based photovoltaic devices. It was found that the output power density and fill factor of such photovoltaic devices are around 0.3 mW/cm2 and 70%, respectively.
[1] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapor-desposited single crystalline GaN,” Appl. Phys. Lett., vol. 15, p. 327, 1969.
[2] H. M. Manasevit, F. M. Erdmann, and W. I. Simpson, “The use of metalorganics in the preparation of semiconductor materials IV. The nitrides of aluminum and gallium,” J. Electrochem. Soc., vol. 118, p. 1864, 1971.
[3] I. Akasaki et al. MITI report in Japanse only, 1974.; I. Akasaki, and I. Hayashi, Ind. Sci. Technol., vol. 17, p. 48, 1976.
[4] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor pahse epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, p. 353, 1986.
[5] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, p. L2112, 1989.
[6] S. Nakamura, T. Mukai, M. Senoh, and M. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., vol. 31, p. L139, 1992.
[7] M. Iwaya, T. Takeuchi, S. Yamaguchi, C. Wetzel, H. Amano, and I. Akasaki, “Reduction of Etch Pit Density in Organometallic Vapor Phase Epitaxy-Grown GaN on Sapphire by Insertion of a Low-Temperature-Deposited Buffer Layer between High-Temperature-Grown GaN,” Jpn. J. Appl. Phys., vol. 37, p. L316, 1998.
[8] E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, S. J. C. Irvine, and A. Stafford, “Reduction of threading dislocation density in GaN using an intermediate temperature interlayer,” Appl. Phys. Lett., vol. 77, p. 3562, 2000.
[9] S. Haffouz, H. Lahreche, P. Vennegues, B. Beaumont, F. Ombes, and P. Gibart, “The effect of the Si/N treatment of a nitridated sapphire surface on the growth mode of GaN in low-pressure metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 73, p. 1278, 1998.
[10] S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, “A new method of reducing dislocation density in GaN layer grown on sapphire substrate by MOVPE,” J. Cryst. Growth, vol. 221, p. 334, 2000.
[11] P. Kung, D. Walker, M. Hamilton, J. Diaz, and M. Razeghi, “Lateral epitaxial overgrowth of GaN films on sapphire and silicon substrates,” Appl. Phys. Lett., vol. 74, p. 570, 1999.
[12] I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films,” Appl. Phys. Lett. vol. 76, p. 3768, 2000.
[13] X. Q. Shen, H. Matsuhata and H. Okumura, “Reduction of the threading dislocation density in GaN films grown on vicinal sapphire (0001) substrates,” Appl. Phys. Lett., vol. 86, p. 021912, 2005.
[14] P. A. Grudowski, A. L. Holmes, C. J. Eiting and R. D. Dupuis, “The effect of substrate misorientation on the photoluminescence properties of GaN grown on sapphire by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 69, p. 3626, 1996.
[15] S. W. Kim, H. Aida and T. Suzuki, “The effect of a slight mis-orientation angle of c-plane sapphire substrate on surface and crystal quality of MOCVD grown GaN thin films,” Phys. Stat. Sol. (c), vol. 1, p. 2483, 2004.
[16] M. Razeghi, and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. vol. 79, p. 7433, 1996.
[17] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. A. Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for vible-blind ultraviolet detection,” Appl. Phys. Lett., vol. 70, p. 2277, 1997.
[18] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, “High-performance (Al,Ga)N-based solar-blind ultraviolet p–i–n detectors on laterally epitaxially overgrown GaN,” Appl. Phys. Lett., vol. 75, p. 247, 1999.
[19] N. Biyikli, I. Kimukin, O. Aytur, and E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity,” IEEE Photon. Technol. Lett., vol. 16, no. 7, p. 1718, July 2004.
[20] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov, and H. Temkin, “Low noise p-π-n GaN ultraviolet photodetectors,” Appl. Phys. Lett., vol. 71, p. 2334, 1997.
[21] Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, W. C. Lai, and J. M. Tsai, “GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes,” IEEE Sens. J., vol. 2, no. 4, p. 366, Aug. 2002.
[22] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts,” IEEE Photon. Technol. Lett., vol. 13, no. 8, p. 848, Aug. 2001.
[23] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B, vol. 66, p. 201403, 2002.
[24] B. E. Fortz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, “Transient electron transport in wurtzite GaN, InN, and AlN,” J. Appl. Phys., vol. 85, p. 7727, 1999.
[25] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. vol. 80, p. 3967, 2002.
[26] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., vol. 81, p. 1246, 2002.
[27] S. A. Safvi, J. M. Redwing, M. A. Tischler, and T. F. Kuech, “GaN growth by mteallorganic vapor phase epitaxy,” J. Electrochem. Soc., vol. 144, p. 1789, 1997.
[28] J. R. Creighton, G. T. Wang, W. G. Breiland, and M. E. Coltrin, “Nature of the parasitic chemistry during AlGaInN OMVPE,” J. Cryst. Growth, vol. 261, p. 204, 2004.
[29] T. G. Mihopoulos, Reaction and Transport Processes in OMCVD: Selective and Group III-Nitride Growth. Ph.D thesis, Massachusetts Institute of Technology, 1999.
[30] R. P. Parikh, and R. A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary rafial-flow CVD system,” J. Cryst. Growth, vol. 286, p. 259, 2006.
[31] E. Mesic, M. Mukinovic, and G. Brenner, “Numerical study of AlGaN growth by MOVPE in an AIX200 RF hhorizontal reactor,” Comp. Mater. Sci., vol. 31, p. 42, 2004.
[32] A. Hirako, K. Kusakabe, and K. Ohkawa, “Modeling of reaction pathways of GaN growth by metalorganic vapor-phase epitaxy using TMGa/NH3/H2 system: A computational fluid dynamics simulation study,” Jpn. J. Appl. Phys., vol. 44, p. 974, 2005.
[33] J. R. Creighton, G. T. Wang, and M. E. Coltrin, “Fundamental chemistry and modeling of group-III nitride MOVPE,” J. Cryst. Growth, vol. 298, p. 2, 2007.
[34] D. F. Davidson, K. Khose-Hoeinghaus, A. Y. Chang, and R. K. Hanson, Int. J. Chem. Kinet., vol. 22, p. 513, 1990.
[35] R. P. Parikh, and R. A. Adomaitis, “Nitrogen precursors in metalorganic vapor phase epitaxy of (Al,Ga)N,” J. Cryst. Growth, vol. 156, p. 140, 1995.
[36] W. D. Monnery, K. A. Hawboldt, A. E. Pollock, and W. Y. Svrcek, “Ammonia Pyrolysis and Oxidation in the Claus Furnace,” Ind. Eng. Chem. Res., vol. 40, p. 144, 2001.
[37] V. S. Ban, “Mass Spectrometric Studies of Vapor-Phase Crystal Growth,” J. Electrochem. Soc., vol. 119, p. 761, 1972.
[38] S. S. Liu, and D. A. Stevenson, “Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride,” J. Electrochem. Soc., vol. 125, p. 1161, 1978.
[39] M. G. Jacko, and S. J. W. Price, Can. J. Chem., vol. 41, p. 1560, 1962.
[40] S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner, and H. C. Lee, “Homogeneous and Heterogeneous Thermal Decomposition Rates of Trimethylgallium and Arsine and Their Relevance to the Growth of GaAs by MOCVD,” J. Cryst. Growth, vol. 77, p. 188, 1986.
[41] A. Thon, and T. F. Kuech, “High temperature adduct formation of trimethylgallium and ammonia,” Appl. Phys. Lett. vol. 69, p. 55, 1996.
[42] J. B. Williams, The Lewis Acid-Base Concepts: An Overview, Wiley, New York, 1980.
[43] P. W. Atkins, Physical Chemistry, seventh ed., Freeman, New York, 2002.
[44] T. Someya, K. Hoshino, and Y. Arakawa, “Misorientation-angle dependence of GaN layers grown on a-plane sapphire substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 79, p. 1992, 2001.
[45] M. Fatermi, A. E. Wickenden, D. D. Koleske, M. E. Twigg, J. A. Freitas, Jr., R. L. Henry, and R. J. Gorman, “Enhancement of electrical and structural properties of GaN layers grown on vicinal-cut, a-plane sapphire substrates,” Appl. Phys. Lett., vol. 73, p. 608, 1998.
[46] T. Yuasa, Y. Ueta, Y. Tsuda, A. Ogawa, M. Taneya, and K. Takao, “Effect of Slight Misorientation of Sapphire Substrate on Metalorganic Chemical Vapor Deposition Growth of GaN,” Jpn. J. Appl. Phys., vol. 38, p. L703, 1999.
[47] H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “X-ray diffraction analysis of the defect structure in epitaxial GaN,” Appl. Phys. Lett., vol. 77, p. 2145, 2000.
[48] H. Tang, W. Kim, A. Botchkarev, G. Popovici, F. Hamdani, and H. Morkoc, “Analysis of carrier mobility and concentration in Si-doped GaN grown by reactive molecular beam epitaxy,” Solid-State Electron., vol. 42, p. 839, 1998.
[49] B. Pödör, “Analysis of carrier mobility and concentration in Si-doped GaN grown by reactive molecular beam epitaxy,” Phys. Status Solidi., vol. 16, p. K167, 1966.
[50] H. Y. An, O. H. Cha, J. H. Kim, G. M. Yang, K. Y. Lim, E. K. Suh, and H. J. Lee, “Thermal treatment effect of the GaN buffer layer on the photoluminescence characteristics of the GaN epilayer,” J. Appl. Phys., vol. 85, p. 2888, 1999.
[51] B. Monemar, “Luminescence in III-nitrides,” Mater. Sci. Eng. B, vol. 59, p. 122, 1999.
[52] J. Oila, J. Kivioja, V. Ranki, D. C. Look, R. J. Molnar, S. S. Park, S. K. Lee, and J. Y. Han, “Ga vacancies as dominant intrinsic acceptors in GaN grown by hydride vapor phase epitaxy,” Appl. Phys. Lett., vol. 82, p. 3433, 2003.
[53] G. Li, S. J. Chua, S. J. Xu, and W. Wang, “Nature and elimination of yellow-band luminescence and donor–acceptor emission of undoped GaN,” Appl. Phys. Lett., vol. 74, p. 2821, 1999.
[54] J. Y. Shi, L. P. Yu, Y. Z. Wang, G. Y. Zhang, and H. Zhang, “Influence of different types of threading dislocations on the carrier mobility and photoluminescence in epitaxial GaN,” Appl. Phys. Lett., vol. 80, p. 2293, 2002.
[55] J. Neugebauer, and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett., vol. 69, p. 503, 1996.
[56] C. B. Soh, S. J. Chua, H. F. Lim, D. Z. Chi, S. Tripathy, and W. Liu, “Assignment of deep levels causing yellow luminescence in GaN,” J. Appl. Phys., vol. 96, p. 1341, 2004.
[57] D. A. Anderson, and N. Apsley, “The Hall effect in III-V semiconductor assessment,” Semicond. Sci. Technol., vol. 1, p. 187, 1986.
[58] H. Brooks, “Effects of the narrow band gap on the properties of InN,” Phys. Rev., vol. 83, p. 879, 1951.
[59] H. Ehrenreich, J. Phys. Chem. Solids, vol. 8, p. 130, 1959.
[60] D. Lu, D. I. Florescu, D. S. Lee, V. Merai, J. C. Ramer, A. Parekh, and E. A. Armour, “Sapphire substrate misorientation effects on GaN nucleation layer properties,” J. Cryst. Growth, vol. 272, p. 353, 2004.
[61] D. C. Look, J. R. Sizelove, S. Keller, Y. F. Wu, U. K. Mishra and S. P. DenBaars, “Accurate mobility and carrier concentration analysis for GaN,” Solid State Commun., vol. 102, p. 297, 1997.
[62] W. Gotz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler, “Activation energies of Si donors in GaN,” Appl. Phys. Lett., vol. 68, p. 3144, 1996.
[63] T. Ogino, and M. Aoki, “Mechanism of Yellow Luminescence in GaN,” Jpn. J. Appl. Phys., vol. 19, p. 2395, 1980.
[64] T. Tansley and C. P. Fowley, “Optical band gap of indium nitride,” J. Appl. Phys., vol. 59, p. 3241, 1986.
[65] M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, and A. Suzuki, “Optical Properties of InxGa1 - xN with Entire Alloy Composition on InN Buffer Layer Grown by RF-MBE,” Phys. Stat. Sol. (b), vol. 234, p. 750, 2002.
[66] T. V. Shubina, S. V. Ivanov, V. N. Jmerik, D. D. Solnyshkov, V. A. Vekshin, P. S. Kop’ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, K. Shimono, A. Kasic, and B. Monemar, “Mie Resonances, Infrared Emission, and the Band Gap of InN,” Phys. Rev. Lett., vol. 92, p. 117407, 2004.
[67] T. Ohashi, T. Kouno, M. Kawai, A. Kikuchi, and K. Kishino, “Growth and characterization of InGaN double heterostructures for optical devices at 1.5-1.7 mm communication wavelengths,” Phys. Stat. Sol. (a), vol. 201, p. 2850, 2004.
[68] J. Wu, W. Walukiewicz, W. Shan, K. M. Wu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys., vol. 94, p. 4457, 2003.
[69] H. L. Xiao, X. L. Wang, J. X. Wang, N. H. Zhang, H. X. Liu, Y. P. Zeng, J. M. Li, and Z. G. Wang, “Growth and characterization of InN on sapphire substrate by RF-MBE,” J. Cryst. Growth, vol. 276, p. 401, 2005.
[70] B. Liu, T. Kitajima, D. X. Chen, and S. R, Leone, “Growth modes of InN (000-1) on GaN buffer layers on sapphire,” J. Vacuum Sci. Technol. A, vol. 23, p. 304, 2005.
[71] T. Araki, Y. Saito, T. Yamaguchi, M. Kurouchi, Y. Nanishi, and H. Naoi, “Radio frequency-molecular beam epitaxial growth of InN epitaxial films on (0001) sapphire and their properties,” J. Vacuum Sci. Technol. B, vol. 22, p. 2139, 2004.
[72] M. Higashiwaki and T. Matsui, “Plasma-assisted MBE growth of InN films and InAlN/InN heterostructures,” J. Cryst. Growth, vol. 251, p. 494, 2003.
[73] B. Maleyre, O. Briot, and S. Ruffenach, “MOVPE growth of InN films and quantum dots,” J. Cryst. Growth, vol. 269, p. 15, 2004.
[74] A. Yamamoto, Y. Murakami, K. Koide, M. Adachi, and A. Hashimoto, “Growth Temperature Dependences of MOVPE InN on Sapphire Substrates,” Phys. Stat. Sol. (b), vol. 228, p. 5, 2001.
[75] M. C. Johnson, S. L. Konsek, A. Zetl, and E. D. Bourret-Courchesne, “Nucleation and growth of InN thin films using conventional and pulsed MOVPE,” J. Cryst. Growth, vol. 272, p. 400, 2004.
[76] R. Intartaglia, B. Maleyre, S. Ruffenach, O. Briot, T. Taliercio, and B. Gil, “Radiative and nonradiative recombination processes in InN films grown by metal organic chemical vapor deposition,” Appl. Phys. Lett., vol. 86, p. 142104, 2005.
[77] C. A. Chang, C. F. Shih, N. C. Chen, P. H. Chang, and K. S. Liu, “High mobility InN films grown by metal-organic vapor phase epitaxy,” Phys. Stat. Sol. (c), vol. 1, p. 2559, 2004.
[78] T. Matsuoka, H. Okamoto, and M. Nakao, “Growth of wurtzite InN using MOVPE and its optical characteristics,” Phys. Stat. Sol. (c), vol. 0, p. 2806, 2003.
[79] Y. Huang, H. Wang, Q. Sun, J. Chen, D. Y. Li, Y. T. Wang, and H. Yang, “Low-temperature growth of InN by MOCVD and its characterization,” J. Cryst. Growth, vol. 276, p. 13, 2005.
[80] Z. X. Bi, R. Zhang, Z. L. Xie, X. Q. Xiu, Y. D. Ye, B. Liu, S. L. Gu, B. Shen, Y. Shi, and Y.D. Zheng, “The growth temperature dependence of In aggregation in two-step MOCVD grown InN films on sapphire,” Matter. Lett., vol. 58, p. 3641, 2004.
[81] P. Singh, P. Ruterana, M. Morales, F. Goubilleau, M. Wojdak, J. F. Carlin, M. Ilegems, D. Chateigner, “Structural and optical characterisation of InN layers grown by MOCVD,” Superlattice Microst., vol. 36, p. 537, 2004.
[82] P. Ruterana, M. Abouzaid, F. Gloux, W. Maciej, J. L. Doualan, M. Drago, T. Schmidtling, U. W. Pohl, and W. Richter, “Investigation of InN layers grown by MOCVD using analytical and high resolution TEM: The structure, band gap, role of the buffer layers,” Phys. Stat. Sol. (a), vol. 203, p. 158, 2006.
[83] E. Kurimoto, H. Harima, A. Hashimoto, and A. Yamamoto, “MOCVD Growth of High-Quality InN Films and Raman Characterization of Residual Stress Effects,” Phys. Stat. Sol. (b), vol. 228, p. 1, 2001.
[84] R.A. McClatchey, W.S. Benedict, S.A. Clough, D.E. Burch, R.F. Calfee, K. Fox, L.S. Rothman, and J.S. Garing, AFCRL. TR-73-0096, Environmental Research Papers, No. 434, 1973.
[85] H. Lu, W. J. Schaff, J. Hwang, H. Wu, G. Koley, and L. F. Eastman, “Effect of an AlN buffer layer on the epitaxial growth of InN by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 79, p. 1489, 2001.
[86] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN blue light-emitting diodes,” J. Luminescence, vol. 5, p. 84, 1972.
[87] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett., vol. 72, p. 211, 1998.
[88] N. Grandjenn, and J. Massies, “Real time control of InxGa1 – xN molecular beam epitaxy growth,” Appl. Phys. Lett., vol. 72, p. 1078, 1998.
[89] Y. C. Cheng, K. Tai, S. T. Chou, K. F. Huang, W. J. Lin, and A. C. H. Lin, “Reduction of Spontaneous Surface Segregation in (InP)2/(GaP)2 Quantum Wells Grown on Tilted Substrates,” Jpn. J. Appl. Phys., vol. 38, p. 17, 1999.
[90] Y. K. Su, S. J. Chang, C. H. Ko, J. F. Chen, T. M. Kuan, W. H. Lan, W. J. Lin, Y. T. Cherng, and J. Webb, “InGaN/GaN Light Emitting Diodes With a p-Down Structure,” IEEE Trans. Electron Dev., vol. 49, p. 1361, Aug. 2002.
[91] H. W. Shim, E. K. Suh, C. H. Hong, Y. W. Kim, H. J. Lee, “Effect of well profile on optical and structural properties in InGaN/GaN quantum wells and light emitting diodes,” Phys. Stat. Sol. (a), vol. 200, p. 62, 2003.
[92] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm,” Appl. Phys. Lett., vol. 70, p. 981, 1997.
[93] K. S. Ramaiah, Y. K. Su, S. J. Chang, and B. Kerr, H. P. Liu and I. G. Chen, “Characterization of InGaN/GaN multi-quantum-well blue-light-emitting diodes grown by metal organic chemical vapor deposition,” Appl. Phys. Lett., vol. 84, p. 3307, 2004.
[94] N. Grandjean, B. Damilano, J. Massies, and S. Dalmasso, “Enhanced luminescence efficiency due to exciton localization in self-assembled InGaN/GaN quantum dots,” Solid State Commun., vol. 113, p. 495, 2000.
[95] S. J. Chang, C. L. Yu, C. H. Chen, P. C. Chang and K. C. Huang, “Nitride-based ultraviolet metal-semiconductor-metal photodetectors with low-temperature GaN cap layers and Ir/Pt contact electrodes,” J. Vac. Sci. Technol. A, vol. 24, p. 637, 2006.
[96] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi and J. M. Tsai, “GaN Schottky barrier photodetectors with a low-temperature GaN cap layer,” Appl. Phys. Lett., vol. 82, p. 2913, 2003.
[97] S. Nakamura, “GaN Growth Using GaN Buffer Layer,” Jpn. J. Appl. Phys., vol. 30, p. L1705, 1991.
[98] L. S. Yeh, M. L. Lee, J. K. Sheu, M. G. Chen, C. J. Kao, G. C. Chi, S. J. Chang and Y. K. Su, “Visible-blind GaN p-i-n photodiodes with an Al0.12Ga0.88N/GaN superlattice structure,” Solid-State Electron., vol. 47, p. 873, 2003.
[99] J. C. Carrano, D. J. H. Lambert, C. J. Eiting, C. J. Collins, T. Li, S. Wang, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, “GaN avalanche photodiodes,” Appl. Phys. Lett., vol. 76, p. 924, 2000.
[100] J. B. Limb, D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, and K. Evans, “GaN ultraviolet avalanche photodiodes with optical gain greater than 1000 grown on GaN substrates by metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 89, p. 011112, 2006.
[101] M. Trivedi and K. Shenai, “Performance evaluation of high-power wide band-gap semiconductor rectifiers,” J. Appl. Phys., vol. 85, p. 6889, 1999.
[102] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., vol. 83, p. 6148, 1998.
[103] R. Singh, R. J. Molnar, M. S. Ünlü, and T. D. Moustakas, “Intensity dependence of photoluminescence in GaN thin films,” Appl. Phys. Lett., vol. 64, p. 336, 1994.
[104] S. Verghese, K. A. McIntosh, R. J. Molnar, L. J. Mahoney, R. L. Aggarwal, M. W. Geis, K. M. Molvar, E. K. Duerr, and I. Melngailis, “GaN Avalanche Photodiodes Operating in Linear-Gain Mode and Geiger Mode,” IEEE Trans. Electron Devices, vol. 48, no. 3, p. 502, Mar. 2001.
[105] J. Han, K. E. Waldrip, S. R. Lee, J. J. Figiel, S. J. Hearne, G. A. Petersen, and S. M. Myers, “Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers,” Appl. Phys. Lett., vol. 78, p. 67, 2001.
[106] J. F. Wang, D. Z. Yao, J. Chen, J. J. Zhu, D. G. Zhao, D. S. Jiang, H. Yang, and J. W. Liang, “Strain evolution in GaN layers grown on high-temperature AlN interlayers,” Appl. Phys. Lett., vol. 89, pp. 152105, 2006.
[107] S. J. Chang, C. L. Yu, P. C. Chang, and Y. C. Lin, “GaN Ultraviolet Photodetector with a Low-Temperature AlN Cap Layer,” Electrochem. Solid-State Lett., vol. 10, p. H196, 2007.
[108] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoç, “Valence-band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x-ray photoemission spectroscopy,” Appl. Phys. Lett., vol. 68, p. 2541, 1996.
[109] A. M. Roskowski, P. Q. Miraglia, E. A. Preble, S. Einfeldt, and R. F. Davis, “Surface instability and associated roughness during conventional and pendeo-epitaxial growth of GaN(0001) films via MOVPE,” J. Cryst. Growth, vol. 241, p. 141, 2002.
[110] S. J. Chang, C. H. Chen, Y. K. Su, J. K. Sheu, W. C. Lai, J. M. Tasi, C. H. liu, and S. C. Chen, “Improved ESD protection by combining InGaN-GaN MQW LED with GaN Schotty diode,” IEEE Electron. Device. Lett., vol. 24, p. 129, Mar. 2003.
[111] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tasi, J. K. Sheu, and C. T. Lee, “Nitride-Based LEDs With 800℃ Grown p-AlInGaN-GaN Double-Cap Layers,” IEEE Photon. Technol. Lett., vol. 16, no. 6, p. 1447, June 2004.
[112] Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tasi, W. C. Lai, C. H. Kuo, and C. S. Chang, “InGaN-GaN MQW LEDs With Si Treatment,” IEEE Photon. Technol. Lett., vol. 17, no. 8, p. 1620, Aug. 2005.
[113] A. Fujishima, K. Hashimoto, and T. Watanabe, TiO2 Photocatalysis. Fundamentals and Applications, Tokyo, BKC Inc., pp. 14-176.1999,
[114] R. K. Sharma, M. C. Bhatnagar, and G. L. Sharma, “Mechanism of highly senitive and fast response Cr doped TiO2 oxygen gas sensor,” Sensors and Actuators B, vol. 45, p. 209, 1997.
[115] M. Grätzel, “Photoelectrochemical cells,” Nature, vol. 414, p. 338, 2001.
[116] A. Bendavid, P. J. Martin, A. Jamting, and H. Takikawa, “Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition,” Thin Solid Films, vol. 355-356, p. 6, 1999.
[117] Y. Leprince-Wang, D. Souche, K. Yu-Zhang, S. Fisson, G. Vuye, and J. Rivory, “Relations between the optical properties and the microstructure of TiO2 thin films prepared by ion-assisted deposition,” Thin Solid Films, vol. 359, p. 171, 2000.
[118] J. Aarik, A. Aidla, H. Mändar, T. Uustare, M. Schuisky, and Anders Hårsta, “Atomic layer growth of epitaxial TiO2 thin films from TiCl4 and H2O on α-Al2O3 substrates,” J. Cryst. Growth, vol. 242, p. 189, 2002.
[119] P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett., vol. 43, p. 579, 1983.
[120] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.
[121] C. J. Collins, T. Li, D. J. H. Lambert, M. M. Wong, R. D. Dupuis, and J. C. Campbell, “Selective regrowth of Al0.30Ga0.70N p-i-n photodiodes,” Appl. Phys. Lett., vol. 77, p. 2810, 2000.
[122] R. R. King, D. C. Law, C. M. Fetzer, R. A. Sherif, K. M. Edmondson, S. Kurtz, G. S. Kinsey, H. L. Cotal, D. D. Krut, J. H. Ermer, and N. H. Karam, “Pathways to 40% Efficient Concentrator Photovoltaics,” Proceedings of the 20th Eu. PVSEC, p. 118, 2005.
[123] O. Jani, C. Honsberg, A. Asghar, D. Nicol, I. Ferguson, A. Doolittle, and S. Kurtz, “Characterization and Analysis of InGaN Photovoltaic Devices,” Proceedings of the 31st IEEE PVSC, p. 37, 2005.
[124] A. Devos, Endoreversible Thermodynamics of Solar Energy Conversion, OUP, 1990.
[125] J. W. Ager, and W. Walukiewicz, “High efficiency, radiation-hard solar cells,” Lawrence Berkeley National Laboratory Report 56326, 2004,
[126] I. Ho, and G. B. Stringfellow, “Solid Phase Immiscibility in GaInN,” Appl. Phys. Lett., vol. 69, p. 2701, 1996.
[127] I. H. Ho, and G. B. Stringfellow, “Incomplete Solubility in Nitride Alloys,” Mater. Res. Soc. Symp. Proc., vol. 449, p. 871, 1997.
[128] N. A. El-Masry, E. L. Piner, S. X. Liu, and S. M. Bedai, “Phase separation in InGaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 72, p. 40, 1998.
[129] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett., vol. 70, p. 1089, 1997.
[130] A. Krost, J. Blasing, H. Protzmann, M. Lnenburger, and M. Heuken, “Indium nanowires in thick (InGaN) layers as determined by x-ray analysis,” Appl. Phys. Lett., vol. 76, p. 1395, 2000.
[131] P. Ruterana, G. Nouet, W. Van der Stricht, I. Moerman, and L. Considine, “Chemical ordering in wurtzite InxGa1 – xN layers grown on (0001) sapphire by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 72, p. 1742, 1998.
[132] P. Ruterana, and F. Deniel, “Observation of ordering and phase separation in InxGa1−xN layers,” Mater. Sci. Eng. B, vol. 59, p.186, 1999.
[133] V. Y. Malakhov, “Potential PV materials-based InN thin films: fabrication, structural and optical properties,” Sol. Energy Mater. Sol. Cells, vol. 76, p. 637, 2003.
[134] T. Tanaka, A. Watanabe, H. Amano, Y. Kobayashi, I. Akasaki, S. Yamazaki, and M. Koike, “P-type conduction in Mg-doped GaN and Al0.08Ga0.92N Grown by Metalorganic Vapor Phase Epitaxy,” Appl. Phys. Lett., vol. 65, p. 593, 1994,
[135] W. Geerts, J. D. Mackenzie, C. R. Abernathy, S. J. Pearton, and T. Schmiedel, “Electrical Transport in p-GaN, n-InN and n-InGaN”, Solid-State Electron., vol. 39, p. 1289, 1996.
[136] M. R. Islam, M. A. Rayhan, M. E. Hossain, A. G. Bhuiyan, M. R. Islam, and A. Yamamoto, “Projected performance of InxGa1-xN-based multijuction solar cells,” 4th International Conference on Electrical and Computer Engineering ICECE, p. 241, 2006.