簡易檢索 / 詳目顯示

研究生: 詹昇浩
Zhan, Sheng-Hao
論文名稱: 多元序列試驗中連與其相關統計量
Statistics of run in a sequence of multi-state trials
指導教授: 張欣民
Chang, Hsing-Ming
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 39
中文關鍵詞: 連分佈有限馬可夫鏈DNA 序列
外文關鍵詞: distribution of run, finite Markov chain imbedding, DNA sequence
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以多元序列為題材,分別對序列中的連個數和最長的連提出其精確的分佈,其中多元序列指的是至少由3 種元素所構成的序列,如DNA序列(腺嘌呤(A)、胞嘧啶(C)、鳥嘌呤(G)和胸腺嘧啶(T))。序列中的連常用來評斷該序列的出現是否為隨機,在各元素出現機率相等的情況下,若連個數太多或太少皆可懷疑該序列的出現並非隨機的。此類問題在二元序列中已有廣泛的研究,而本文將以DNA 序列為例,分別先定義A、T、C、G 生成的機率,再利用FMCI 之技巧,分別對元素取後放回與取後不放回提出精確的分佈,最後探討這兩個假設在計算上的效率,另外也會額外探討二元序列在元素取後不放回的假設下,其最長的連和連個數的精確分佈。

    Number of runs and longest of run for a multi-state
    sequence are studied in this thesis. Our target in research is to find the exact distribution. We will use the DNA sequence to be the example. The possible elements are A, C, G, and T, representing the four nucleotide bases
    of a DNA strand. We define the generating probability of the four elements first, then we use FMCI to provide the exact distribution for element with replacement and element without replacement respectively, and finally exploring the efficiency of two methods. Also , we will conduct the exact distribution of run for element without replacement in a two-state sequence.

    目錄 第 1 章 緒論 1 第1節 研究動機 1 第2節 研究目的 1 第3節 研究架構 2 第 2 章 文獻回顧 4 第1節 Distribution of run 4 第2節 Finite Markov Chain Imbedding(FMCI) 5 第 3 章 研究方法 6 第1節 二元序列元素取後不放回 6 1.1最長的連(Longest run)之分佈 6 1.2 連個數(Number of runs)之分佈 7 第2節 多元序列符號定義與問題分類 8 第3節 多元序列元素取後放回 10 3.1 最長的連(Longest run)之分佈 10 3.2連個數(Number of runs)之分佈 12 第4節 多元序列元素取後不放回 14 4.1 最長的連(Longest run)之分佈 14 4.2 連個數(Number of runs)之分佈 17 第 4 章 程式結果 21 第1節 二元序列元素取後不放回 21 第2節 多元序列元素取後放回 24 第3節 多元序列元素取後不放回 29 第4節 多元序列模擬結果 33 第 5 章 結論 37 第1節 研究結果 37 第2節 未來研究方向 37 參考文獻 38 表目錄 表 4 1 二元序列元素取後不放回計算時間(單位:秒) 23 表 4 2 元素取後放回計算時間(單位:秒) 27 表 4 3 元素取後放回連個數分佈(n=100) 27 表 4 4 元素取後不放回計算時間(單位:秒) 32 表 4 5 元素取後放回與取後不放回之比較 33 圖目錄 圖 1 1 研究架構與研究流程 3 圖 2 1 二元序列中的連(run) 4 圖 4 1 二元序列元素取後不放回最長的連分佈(n=15) 21 圖 4 2 二元序列元素取後不放回連個數分佈(n=15) 22 圖 4 3 二元序列元素取後不放回最長的連分佈(n=19) 22 圖 4 4 二元序列元素取後不放回連個數分佈(n=19) 23 圖 4 5 元素取後放回之最長的連分佈(n=10) 24 圖 4 6 元素取後放回之連個數分佈(n=10) 25 圖 4 7 元素取後放回之最長的連分佈(n=100) 25 圖 4 8 元素取後放回之連個數分佈(n=100) 26 圖 4 9 元素取後放回之最長的連分佈(n=750) 26 圖 4 10元素取後放回之連個數分佈(n=750) 27 圖 4 11元素取後不放回之最長的連分佈(n=5) 29 圖 4 12元素取後不放回之連個數分佈(n=5) 30 圖 4 13元素取後不放回之最長的連分佈(n=8) 30 圖 4 14元素取後不放回之連個數分佈(n=8) 31 圖 4 15元素取後不放回之最長的連分佈(n=10) 31 圖 4 16元素取後不放回之連個數分佈(n=10) 32 圖 4 17多元序列最長的連分佈比較(n=5) 34 圖 4 18多元序列連個數分佈比較(n=5) 34 圖 4 19多元序列最長的連分佈比較(n=8) 35 圖 4 20多元序列連個數分佈比較(n=8) 35 圖 4 21多元序列最長的連分佈比較(n=10) 36 圖 4 22多元序列連個數分佈比較(n=10) 36

    [1]Chang, Y. M., Fu, J. C., and Lin, H. Y. (2012).
    Distribution and double generating function of number of patterns in a sequence of Markov dependent multistate trials. Annals of the Institute of Statistical Mathematics (Feb., 2010), pp. 55-68.

    [2]Eryilmaz, S. C. (2016). Reliability of Systems With Multiple Types of Dependent Components. IEEE Transactions on Reliability, Vol. 65, No. 2 (Jun.,2016), pp. 1022-
    1029.

    [3]Fu, J. C. (1987). Reliability of Consecutive-k-out-of-n: F Systems with (k-1)-step Markov Dependence. IEEE Transactions on Reliability, Vol. R-36, No. 1 (Apr.,1987),
    pp. 75-77.

    [4]Fu, J. C. and Koutras, M. V. (1994). Distribution Theory of Runs: A Markov Chain Approach. Journal of the American Statistical Association, Vol. 89, No.427 (Sep.,
    1994), pp.1050-1058.

    [5]Fu, J. C. (1996). Distribution Theory of Runs and Patterns Associated with a sequence of multi-state trials. Statistica Sinica 6 (Jan., 1996), pp. 957-974.

    [6]Fu, J. C., Wang, L., and Lou, W. Y. W.(2003). On Exact And Large Deviation Approximation For The Distribution Of The Longest Run In A Sequence Of Two-State Markov Dependent Trials. J. Appl. Prob. 40 (2003), pp. 346-360.

    [7]Fu, J. C. and Johnson B. C. (2009). Approximate probabilities for runs and patterns in i.i.d. and Markov-dependent multistate trials. Adv. Appl. Prob. 41 (2009), pp. 292-308.

    [8]Fu, W. H., Lee, W. C., and Fu, J. C. (2016).
    Distributions and Causation Probabilities of Multiple-Run-Rules and Their Applications in System Reliability, Quality Control, and Start-Up Tests. IEEE Transactions on Reliability, Vol. 65, No. 3 (Sep.,2016), pp. 1624-1628.

    [9]Han, Q. and Aki, S. (1999). Joint Distributions of Runs In A Sequence Of Multi-State Trials. Ann. Inst. Statist. Math, Vol. 51, No. 3 (1999), pp. 419-447.

    [10]Koutras, M. V. and Alexandrou, V. A. (1997). Non-parametric randomness tests based on success runs of fixed length. Statistics & Probability Letters 32 (1997), pp.
    393-404.

    [11]Lou, W. Y. W. (1996). On Runs and Longest Run Tests: A Method of Finite Markov Chain Imbedding. Journal of the American Statistical Association, Vol. 91, No. 436 (Dec., 1996), pp. 1595-1601.

    [12]O'Brien, P. C. and Dyck, P. J. (1985). A runs test based on run lengths. Biometrics, Vol. 41, No. 1 (Mar., 1985), Vol. 1, No. 1 (Feb., 1964), pp. 50-55.

    [13]Philippou, A. N. and Makri, F. S. (1986). Successes, runs and longest runs. Statistics & Probability Letters 4 (1986), pp.211-215.

    [14]Schilling, M. F. (1990). The longest run of heads. The College Mathematics Journal, Vol. 21, No.3 (May., 1990), pp.196-207.

    [15]Schwager, S. J.(1983). Run Probabilities in Sequences of Markov-Dependent Trials, Journal of the American Statistical Association, Vol. 78, No. 381 (Mar., 1983), pp. 50-55.

    [16]Styan, G. P. H. and Smith, H. Jr. (1964). Markov Chains Applied to Marketing. Journal of Marketing Research, Vol. 1, No. 1 (Feb., 1964), pp. 50-55.

    下載圖示 校內:2024-06-17公開
    校外:2024-06-17公開
    QR CODE