簡易檢索 / 詳目顯示

研究生: 盧又彥
Lu, You-Yan
論文名稱: 結合動態模型試驗及數值模擬探討液化土層中沉箱式碼頭受震之反應
The Study of Caisson Type Quay Walls Responses in Liquefied soil by Dynamic Model Test and Numerical Analysis
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 沉箱式碼頭動態模型試驗動態數值模擬土壤-結構互制土壤液化
外文關鍵詞: caisson type quay wall, dynamic model test, dynamic numerical analysis, soil-structure interaction, soil liquefaction
相關次數: 點閱:95下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣四面環海且為地震頻繁區,港口的耐震性為重要研究議題,沉箱式碼頭因其堅固且耐久之優點為常見之港口形式之一。本研究結合大型震動台沉箱模型試驗與數值模擬驗證,探討沉箱式碼頭在動態模型試驗中之反應。震動台沉箱模型試驗以乾淨砂及礫石置於沉箱背填及底部,規劃兩組沉箱模型,比較(1)有無基底礫石對沉箱受震反應的影響;(2)在液化或未液化土層中沉箱碼頭模型之破壞模式、超額孔隙水壓激發、剪應變與超額孔隙水壓激發之耦合反應及土壓力分佈等。數值模型驗證以FLAC程式對沉箱模型進行動態數值模擬,同樣規劃兩組沉箱模型並與模型試驗之結果相互對照。研究結果顯示:(1)基底礫石層有助沉箱在受震時抵抗滑動及沉陷量,且可減少背填砂土之液化範圍;(2)沉箱之位移量會直接影響背填土壤之沉陷量,因此含基底礫石層之沉箱模型可減少背填土之沉陷;(3)液化通常由背填及海床表面土層開始發生,隨地震加速度增大及地震延時的增加而增加液化深度。

    Taiwan is an island in seismic zone. The seismic resistance of harbor facilities is an important subject for society. Caisson type quay wall is one of the popular port designs for the long durability and high seismic resistance. This research investigates the dynamic reactions of caisson type quay walls by large-scale shaking table test and numerical analysis. The shaking table test of caisson model used clean sand for seabed and backfill and gravel on the back and bottom of caissons to study two issues, which are (1) the effect of the gravel at the bottom of caisson; and (2) the failure mode, generation of excess pore pressure, couple response of shear strain and excess pore pressure, and induced earth pressures in non-liquefied and liquefied soil. Numerical analyses, which simulate the models of caisson by FLAC, were conducted and compared with shaking table test data. The results indicate: (1) The gravel at the bottom increases the resistance against sliding during shaking and reduces subsidence of caisson and distribution of liquefied zone in the backfill; (2) The gravel foundation reduce the displacement of caisson and subsequently reduce the subsidence of backfill; (3) The liquefaction occurs from soil surface, and extending the depth with the increasing acceleration and duration of shacking. The excess pore pressure at the bottom of caisson is the lower than other locations because of the weight of caisson.

    摘要 I EXTENDED ABSTRACT II 致謝 IX 目錄 X 圖目錄 XIV 表目錄 XIX 第 1 章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究方法與流程 3 1.4 論文架構 5 第 2 章 文獻回顧 6 2.1 土壤液化 6 2.1.1 土壤受震之剪應變與超額孔隙水壓耦合反應 6 2.2 土壤液化對沉箱式碼頭之影響 8 2.3 液化土層沉箱式碼頭破壞機制 10 2.4 沉箱碼頭破壞案例 12 2.5 沉箱式碼頭動態模型試驗之研究 16 2.6 沉箱式碼頭數值模擬 21 2.7 沉箱式碼頭擬靜態分析 26 第 3 章 沉箱式碼頭模型震動台液化試驗 28 3.1 試驗簡介 28 3.2 模型配置與模型準備 28 3.3 試驗設備 30 3.3.1 大型雙軸向層狀剪力試驗盒 30 3.3.2 大型砂土霣落箱 32 3.3.3 沉箱式碼頭模型 35 3.3.4 量測儀器介紹與配置 36 3.4 試體準備與試驗步驟 41 3.4.1 量測儀器架設 41 3.4.2 沉箱模型架設 43 3.4.3 砂土霣降與人工回填 44 3.4.4 試驗規劃 46 第 4 章 震動台模型試驗資料分析與結果 47 4.1 資料分析架構 47 4.2 資料分析方法 48 4.2.1 加速度計資料分析 48 4.2.2 水壓計資料分析 51 4.2.3 SAA資料分析 54 4.2.4 土壓計資料分析 56 4.2.5 框架位移計資料分析 59 第 5 章 動態數值模擬 60 5.1 FLAC程式基本介紹 60 5.2 FLAC動態分析介紹 62 5.2.1 力學阻尼 62 5.2.2 吸能邊界 64 5.2.3 動態邊界條件 65 5.2.4 動水壓力 65 5.2.5 超額孔隙水壓力激發模式 66 5.3 分析流程 68 5.4 沉箱模型數值分析 70 5.5 材料參數設定 73 5.5.1 土壤強度參數 74 5.5.2 土壤動態參數 74 第 6 章 實驗結果與數值模擬結果比較 78 6.1 破壞模式 79 6.2 未液化情況(TEST 5) 80 6.2.1 累積超額孔隙水壓力比較 80 6.2.2 沉箱背填土壓力比較 85 6.2.3 破壞模式比較 88 6.2.4 自由場遲滯圈比較 90 6.3 液化情況(TEST 7) 93 6.3.1 累積超額孔隙水壓力分析 93 6.3.2 剪應變與累積超額孔隙水壓之耦合反應 99 6.3.3 沉箱破壞模式 101 6.3.4 沉箱背之土壓力結果 104 6.3.5 自由場遲滯圈比較 106 第 7 章 結論與建議 109 7.1 結論 109 7.2 建議 110 參考文獻 111

    交通部運研所(1996),“港灣工程專有名詞”,ISBN13:9788016210781。
    交通部運研所(1999),“臺中港1至4A碼頭921地震液化災損初步調查研究”,專刊172。
    交通部運研所(2005),“港灣構造物設計基準修訂(上冊)”,ISBN:986-00-0557-5。
    交通部運研所(2007),“液化對港灣構造物穩定性之影響研究(2/4)”,ISBN:978-986-00-9221-9。
    交通部運研所(2012),“港區碼頭構造物動態模型試驗與數值模擬之研究(2/4)”,ISBN:978-986-03-1807-4。
    交通部運研所(2013),“港區碼頭構造物動態模型試驗與數值模擬之研究(3/4)”,ISBN:978-986-04-0451-7。
    李佳翰(2011),“沉箱碼頭受震引致土壤液化之數值模擬”,國立中央大學應用地質研究所,碩士論文。
    國家地震工程研究中心(2000), “九二一集集大地震後震災勘察大地工程調查組報告”。
    吳珮如(2012),“以動態模型試驗探討液化土層中錨碇版樁之反應”,國立成功大學土木工程學系研究所,碩士論文。

    林德洪(2013),“ 沉箱式碼頭動態模型試驗之數值模擬及模型設計”,國立成功大學土木工程學系研究所,碩士論文。
    翁作新、王明輝、陳銘鴻、何文欽(2001),“大型振動台剪力盒土壤液化試驗(I) ─大型二維剪力盒之研發”,報告編號:NCREE-01-011。
    翁作新、陳家漢、彭立先、李偉誠(2003),“大型振動台剪力盒土壤液化試驗(II)─大型砂試體之準備與振動台初期試驗”,報告編號:NCREE-03-042。
    黃國祥(2002),“滑動塊體分析法及其應用在港灣重力式擋土牆之研究”,國立台灣大學土木工程學系研究所,博士論文,臺北。
    Byrne, P. M.(1991) “A Cyclic Shear-Volume Coupling and Pore-Pressure Model for Sand,” Proceedings of Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Paper No. 1.24, 47-55, 1991, St. Louis, Missouri, March 1991.
    Chang, W. J., Ueng, T. S., Chen, C. H., and Yang, C. W. (2010). Coupled Shear Strain-Pore Pressure Responses of Soil in Shaking Table Tests. Soils and Foundations, Vol. 50(2), pp. 325-334.
    Chang, W. J., Chen, J.F., Ho, H.C., and Chiu, Y. F. (2010), “In Situ Dynamic Model Test for Pile-supported Wharf in Liquefied Sand”, ASTM Geotechnical Testing Journal, Vol. 33, NO.3
    Dakoulas, P. and Gazetas, G. (2005), “Effective stress analysis of caisson quay walls: application to Kobe,” Soils and Foundations. Vol. 45, No. 4, pp. 133-147.
    Finn, W. D. L., Lee, M. K. W. Martin, G. R. (1977), “An effective stress model for liquefaction”, J. Geotech. Eng. ASCE 103, 517-533.
    Hardin, B. O. and Drnevich.V. P. (1972), “Shear Modulus and Damping in Soils: I. Measurement and Parameter Effects, II. Design Equations and Curves,” Journal of Soil Mechanics and Foundation Division, ASCE, Vol. 98, No. 6, pp. 603-624 and No. 7, pp. 667-691
    Iai, S., Ichii, K., Liu, H., and Morita, T. (1998), “Effective Stress Analyses of Port Structures,” Soils and Foundations, Special Issue on Geotechnical Aspects of the January 17, 1995 Hyogoken-Nambu Earthquake, (2), pp.97-114.
    Iai, S., Ichii, K., Sato, Y. and Liu, H. (1999). “Residual displacement of gravity quay walls –parameter study through effective stress analysis”, Proc. 7th U.S.-Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction, MCEER-99-0019, pp. 549-563.
    Iai, S., and Sugano, T. (2000). “Shake table testing on seismic performance of gravity quay walls.” Proceedings of 12th World Conf. on Earthquake Engineering (WCEE) CD-ROM, No. 2680.
    International Navigation Association, INA (2001), “Seismic Design Guidelines for port structures.” ISBN 90-265-1818-8
    Inagaki, H., Iai, S., Sugano, T., Yamazaki, H., and Inatomi, T. (1996), “Performance of Caisson type quay walls at Kobe Port.”, Soils Foundation, Special Issue on Geotechnical Aspects of the January 17 1995 Hyogoken-Nambu earthquake, Japanese Geotechnical Society, pp.119-136.
    Inoue, K., Miura, K., Otsuka, N., Yoshida, N. and Sasajima, T. (2003). “Numerical analysis of the earth pressure during earthquake on the gravity type quay wall.” Proceedings of the Thirteenth International Offshore and Polar Engineering Conference, pp.2095-2209, International Society of Offshore and Polar Engineers, Honolulu, HI, United States, May 25-30, 2003.
    Ishibashi, I., and Madi, L. (1990). “Case studies of quay walls stability with liquefied backfills,” Proceeding of the 4th U.S. National Conference on Earthquake Engineering, Vol.3, pp.725-735.
    Ishihara, K. (1996). “Soil Behaviour in Earthquake Geotechnics,” ISBN 0-19-856224-1
    Itasca, F. L. A. C. (2008). Fast Lagrangian Analysis of Continua, Version 6.00 User’s Guide. Itasca Consulting Group, Inc., U. S. A.
    Kazama, M. and Noda, T. (2012). “Damage statistics (Summary of the 2011 off the Pacific Coast of Tohoku Earthquake damage)” Soils and Foundations, Vol. 52, No. 5, pp. 780-792.
    Kim, S. R., Kwon, O. S., Kim, M. M. (2004), ‘‘Evaluation of force components acting on gravity type quay walls during earthquakes,’’ Soil Dynamics and Earthquake Engineering, ELSEVIER, Vol. 24, pp. 853-866.
    Martin, G. R.,W. D. L. Finn and H. B. Seed. (1975), “Fundamentals of Liquefaction under Cyclic Loading,” J. Geotech., Div. ASCE, 101(GT5), pp.423-438.
    Mito M, Sugano T, Inatomi T, Inagaki H. (1996), “Experimental studies on the caisson type quay wall damaged by Hyogoken-Nanbu earthquake 1995.” Proceedings of 11th WCEE, 1996.
    Miura, K., Kohama, E., Inoue, K., Ohtsuka, N., Sasajima, T. and Yoshida, N. (2000). "Behavior of Gravity Type Quay Wall during Earthquake Regarding Dynamic Interaction between Caisson and Backfill during Liquefaction," Proc. of 12th World Conference on Earthquake Engineering, Vol.7, PaperNo.1737
    Mononobe, N., and Matsuo, M. (1929), “On the Determination of Earth Pressures during Earthquakes,” Proceeding of the World Engineering Congress, Tokyo, Vol.9, pp.177-185.
    Newmark, N. M., (1965), “Effect of Earthquake on Dam and Embankment,” Geotechnique, Vol.15, No. 2, pp.139-159.
    Richards, R. Jr. and Elms, D. (1979), “Seismic Behavior of Gravity Retaining Walls,” Journal of Geotechnical Engineering Division, ASCE, Vol. 105(GT4), pp. 449-464,1979.
    Santamarina, J. C. (2005), “Discrete Signals and Inverse Problems,” ISBN 0-470-02187-X
    Seed, H. B., Tokimatsu, K., Harder, L. F., Chung, R. M.(1984). “The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations”, Earthquake Engineering Research Center Report No. UCB/EERC-84/115, University of California at Berkley
    Ueng, T. S., Wang, M. H., Chen, M. H., Chen, C. H., Peng, L. H. (2006), “A Large Biaxial Shear Box for Shaking Table Test on Saturated Sand”, ASTM, Geotechnical Testing Journal, Vol. 29, No. 1
    Werner, S. D. (1998), “Seismic Guideline for Port Structures,” Technical Council on Lifeline Earthquake Engineering, ASCE, Monograph No.12.
    Westergaard, H. M. (1933), “Water Pressures on Dams during Earthquakes,” Trans. ASCE, Vol.98, pp.418-432.
    Yamaguchi, A., Mori, T., Kazama, M., Yoshida, N. (2012). “Liquefaction in Tohoku district during the 2011 off the Pacific Coast of Tohoku Earthquake,” Soils and Foundations, Vol. 52, No. 5, pp. 811-829.
    Yang, Z., Elgamal, A., Abdoun, T., and Lee, C. J. (2001). “A numerical study of lateral spreading behind a caisson-type quay wal,” In Proc. of 4th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium ,Vol. 1, No. 6.
    Au-Yeung, Y. S., Ho, K. K. S. (1994) “Gravity Retaining Walls Subjected to Seismic Loading,” GEO REPORT No. 45

    下載圖示 校內:2019-09-12公開
    校外:2019-09-12公開
    QR CODE