| 研究生: |
楊智閔 Yang, Chih-Min |
|---|---|
| 論文名稱: |
基於DLCZ 機制產生窄頻史托克光子之研究 Narrowband Stoke Photons Generation Based on DLCZ Protocol |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 拉曼散射 、DLCZ 機制 、電磁波引發透明 、量子中繼站 |
| 外文關鍵詞: | Raman Scattering, DLCZ protocol, Electromagnetically induced transparency, Quantum repeater |
| 相關次數: | 點閱:218 下載:30 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這些年來長距離的量子通訊已受到廣泛的關注,在這篇論文中,我們一開始會先介紹糾纏態的互換特性與量子中繼器並說明如何以DLCZ 的機制實現長距離的量子通訊。在第二章中,我們會先半古典的方式介紹量子光學的基本理論: 電磁波引發透明,而這也正是DLCZ 模型的第二步作法。在第三章中,我們會以全量子的方式結合海森堡朗之萬方程以及馬克斯威爾薛丁格方程計算出在DLCZ 機制下第一步所產生的史托克光子穩態產生率的解析解、頻譜解析解以及二階的自我關聯函數,並分析了基態去同調率以及拉曼增益對系統達到穩態所需時間與產生率的影響。在我們系統下解出史托克光的頻寬極窄,幾乎只受限於基態去同調率,其解析解為柯西-勞侖茲分布,藉由增加拉曼增益後,甚至可以得到幾乎為單頻光的頻譜。由此,史提克光子可以得到極長的同調時間。在第四章中,我們會直接從頻率域出發來解出史托克光,這個作法相較前者簡潔很多,而這個方法的結果與第一種方法幾乎一致且能揭露出史塔克效應造成的影響。
In recent years, large-scale quantum communication earns widespread attention. In the beginning, we will introduce entanglement swapping, purification, and quantum repeater to elaborate on how to realize quantum communication over long distance. In chapter two, we briefly illustrate the semi-classical theory of electromagnetically induced transparency, which denotes the second step of DLCZ scheme. In chapter three, we utilize the Heisenberg-Langevin equation and Maxwell-Schrödinger equation to derive the time-dependent Stoke photons generation by Laplace transform. In addition, we provide the analytic solution of spectrum and the second-order autocorrelation function of Stoke photons. After that, we will discuss the influence of two ground-states decoherence on generation rate and the time it takes to attain steady-state condition. The spectrum of Stoke photons is extremely narrow, which is constricted by two ground-states decoherence. The analytic solution of the spectrum is Cauchy–Lorentz distribution. (owing to the collision of particles) By increasing Raman gain, the spectrum is similar to the spectrum of single-mode photons. In consequence, Stoke photons possess a long coherent time. In chapter four, we exploit an alternative and convenient approach to resolve the spectrum, which reveals the Stark effect that is arduous to be carried out by the first method. The results of several theoretical predictions are almost consistent with the first method.
[1] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” arXiv preprint arXiv:2003.06557, 2020.
[2] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Physical review letters, vol. 67, no. 6, p. 661, 1991.
[3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Reviews of modern physics, vol. 74, no. 1, p. 145, 2002.
[4] H. J. Kimble, “The quantum internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, 2008.
[5] M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.
[6] N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Reviews of Modern Physics, vol. 83, no. 1, p. 33, 2011.
[7] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Physical review letters, vol. 76, no. 5, p. 722, 1996.
[8] D. Bouwmeester and A. Zeilinger, “The physics of quantum information: basic concepts,” in The physics of quantum information, pp. 1–14, Springer, 2000.
[9] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886, pp. 802–803, 1982.
[10] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.
[11] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, “” event-ready-detectors” bell experiment via entanglement swapping.,” Physical Review Letters, vol. 71, no. 26, 1993.
[12] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Physical Review Letters, vol. 81, no. 26, p. 5932, 1998.
[13] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature, vol. 414, no. 6862, pp. 413–418, 2001.
[14] A. Kuzmich, W. Bowen, A. Boozer, A. Boca, C. Chou, L.-M. Duan, and H. Kimble,
“Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles,” Nature, vol. 423, no. 6941, pp. 731–734, 2003.
[15] C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S.
Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science,
vol. 301, no. 5630, pp. 196–200, 2003.
[16] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Physical review, vol. 47, no. 10, p. 777, 1935.
[17] J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika, vol. 1, no. 3, p. 195, 1964.
[18] M. Weber, Experimental Quantum Memory Applications and Demonstration of an Elementary Quantum Repeater Link with Entangled Light-Matter Interfaces. PhD thesis, 05 2012.
[19] J. Hald, J. Sørensen, C. Schori, and E. Polzik, “Spin squeezed atoms: a macroscopic entangled ensemble created by light,” Physical review letters, vol. 83, no. 7, p. 1319, 1999.
[20] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature, vol. 409, no. 6819, pp. 490–493, 2001.
[21] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin “Storage of light in atomic vapor,” Physical review letters, vol. 86, no. 5, p. 783, 2001.
[22] S. E. Harris, J. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Physical Review Letters, vol. 64, no. 10, p. 1107, 1990.
[23] M. O. Scully and M. S. Zubairy, Quantum Optics. Cambridge University Press, 1997.
[24] R. W. Boyd, Nonlinear Optics, Third Edition. USA: Academic Press, Inc., 3rd ed.,
2008.
[25] M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic
medium,” Nature, vol. 426, no. 6967, pp. 638–641, 2003.
[26] M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Physical review letters, vol. 84, no. 22, p. 5094, 2000.
[27] T.-N. Wang, “Quasi-phase-matching slow light propagation in efficient four-wave mixing media,” National Cheng Kung University, 2020.
[28] E. Arimondo, “V coherent population trapping in laser spectroscopy,” Progress in optics, vol. 35, pp. 257–354, 1996.
[29] B. D. Agap’ev, M. Gorny, B. G. Matisov, and Y. V. Rozhdestvenski, “Coherent population trapping in quantum systems,” Physics-Uspekhi, vol. 36, no. 9, p. 763, 1993.
[30] P. Kolchin, “Electromagnetically-induced-transparency-based paired photon generation,” Physical Review A, vol. 75, no. 3, p. 033814, 2007.
[31] M. Raymer and J. Mostowski, “Stimulated raman scattering: unified treatment of spontaneous initiation and spatial propagation,” Physical Review A, vol. 24, no. 4, p. 1980, 1981.
[32] J.-C. Tseng, “Theoretical study on photon generation based on stimulated raman scattering,” National Cheng Kung University, 2020.
[33] C.-Y. Cheng, J.-J. Lee, Z.-Y. Liu, J.-S. Shiu, and Y.-F. Chen, “Quantum frequency
conversion based on resonant four-wave mixing,” Physical Review A, vol. 103, no. 2, p. 023711, 2021.
[34] R. Kubo, “The fluctuation-dissipation theorem,” Reports on progress in physics, vol. 29, no. 1, p. 255, 1966.
[35] V. Weisskopf and E. Wigner, “Berechnung der natürlichen linienbreite auf grund der diracschen lichttheorie,” in Part I: Particles and Fields. Part II: Foundations of Quantum Mechanics, pp. 30–49, Springer, 1997.
[36] D. Rowell, “Chapter 2, continuous and discrete,” in Signal Processing, Massachusetts Institute of Technology.
[37] F. Rana, “Chapter 6, random signals and noise,” in Quantum Optics, Cornell University.
[38] Y. Yamamoto, “Chapter 1 mathematical methods,” in Fundamentals of Noise processes, National Institute of Informatics, Japan.
[39] M. J. Buckingham, “Noise in electronic devices and systems.,” JOHN WILEY & SONS, INC., 605 THIRD AVE., NEW YORK, NY 10158, USA, 1983, 368, 1983.
[40] I. Kostanic, “Lecture 2,” in Digital Communications, Wireless Center Of Excellence, Florida Institute of Technology.
[41] R. Zwanzig, Nonequilibrium statistical mechanics. Oxford university press, 2001.
[42] J. Garrison and R. Chiao, Quantum optics. Oxford University Press, 2008.
[43] R. J. Glauber, “The quantum theory of optical coherence,” Physical Review, vol. 130, no. 6, p. 2529, 1963.
[44] R. Loudon, The quantum theory of light. OUP Oxford, 2000.
[45] M. Fox, Quantum optics: an introduction, vol. 15. OUP Oxford, 2006.