簡易檢索 / 詳目顯示

研究生: 莊純柔
Chuang, Chun-Jou
論文名稱: 跨事業產業共生資源鏈結機會鑑定與循環效益分析-台灣糖業公司為例
Identification of Opportunities and Benefits from the Industrial symbiosis in a Multi-Business Firm-Study of Taiwan Sugar Corporation
指導教授: 陳必晟
Chen, Pi-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 產業共生製糖業副產物生態效率成本效益分析
外文關鍵詞: Industrial symbiosis, Sugar refinery, By-product, Ecological efficiency, Cost-benefit analysis
相關次數: 點閱:154下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 每個行業、製程都需要依賴資源。然而在台灣,大部分資源都仰賴進口原料來滿足,因此減少使用原始物料和降低依賴進口才能提高資源效率和產業可持續性。為了實現這目標,工業將製造過程產生的副產物進行循環再利用,在一個製程不再需要的原物料、能源、水和其他資源,成為另一個製程的原物料,以獲得最大循環效率和價值。在產業共生成功案例中,卡倫堡共生園區因此減少635,000公噸的二氧化碳排放;英國糖業每生產1公噸的糖產出廢棄物也小於200公克;南寧糖業總利潤提升6千萬。本研究將整合相關產業共生模式,推行至台灣產業。在台灣,台灣糖業公司擁有多元產業,包括糖廠、畜牧業、農業和生物科技等,是非常具潛力發展產業之間的副產物交換。
    在本研究目的是透過台糖公司內部或與外界產業尋找潛在資源交換流動的路徑,以提升循環效益。首先,透過台糖公司物質流盤查確定各事業資源投入和產出的流動狀況及其流量大小,再設計涵蓋資源組成的成分及再利用方法的資源循環潛力表,並透過文獻收集新技術和案例,找出具有商業價值的資源鏈結機會的方式。最後透過生態效率和成本效益分析評估新資源鏈結產生的環境和經濟效益。
    透過將事業部副產物變原物料所產生的生態效率,計算結果顯示新循環的製糖業和畜殖業,在總產品量和廢棄物量間比例分別提升24.8%和61.5%;總收益和廢棄物量間比例分別提升23.3%和79.5%。將副產物製成新產品的成本效益分析結果顯示,將糖業副產物煙灰製成建築業紅磚,提升利潤5,302,330元;糖業煙灰取代混凝土空心磚中的水泥成分,獲得利潤高達291,700,005元;糖業副產物蔗渣進行製漿造紙,獲得利潤為19,411,770元;糖業副產物糖蜜提取環氧乙烷作為天然界面活性劑,利潤能獲得35,301,000元。這些有潛力開發的新產品,經過循環效益評估結果顯示都是提升,在未來若能實施於企業,對產業發展是很大助力。

    SUMMARY
    In Taiwan, Taiwan Sugar company has multi-business including sugar refinery, livestock, agriculture and, biotechnology, etc., There are opportunities to develop by-product Industrial symbiosis among the business. This study is to change the current state of the Taiwan Sugar Company by recycling and recycling the by-products of the business. Materials, energy, water and resources that are no longer needed in one process can be used as a raw material in another process, to improve the efficiency of resource use to enhance environmental and economic benefits. The environmental and economic benefits of the new resource chain model will be assessed, using eco-efficiency and Cost-Benefit Analysis, respectively. The eco-efficiency calculations show the new circular of the sugar industry and the livestock industry, the ratio between total product volume and waste volume increased by 24.8% and 61.5%, respectively; the ratio between total revenue and waste volume increased by 23.3% and 79.5%, respectively. The cost-benefit analysis of the manufacture of by-products into new products shows that the sugar industry by-product soot is made into the red brick of the construction industry with a profit of 5,302,330 NTD; the sugar industry ash replaces the cement component in the concrete hollow brick, and the profit is as high as 291,700,005 NTD. The sugar industry by-product bagasse was used for pulping and papermaking, and the profit was 19,411,770NTD. The sugar industry by-product molasses extracted ethylene oxide as a natural surfactant, with a profit of 35,301,000 NTD.

    INTRODUCTION
    Every industry and process needs to rely on resources. Most of the resources in Taiwan also need imported raw materials to meet. According to the Living Planet Report (2018) of the World Wildlife Fund (WWF), as time goes on, human activities consume 1.5 Earth resources a year if they don’t change the linear model used in today's industries; In 2030, two Earth resources are needed. Because, the global consumption of resources is gradually increasing, so it is necessary to improve resource efficiency and industry sustainability by changing the way raw materials are obtained, product production processes, and waste disposal to reducing the use of raw materials and reducing to rely on imported raw materials. In order to achieve the goal, the industries uses the by-products and wastes produced by the manufacturing process, the materials, energy, water and other resources that are no longer needed in one process can be used by another process as raw material. Let resources be recycled and reused to achieve maximize the utility and value in the circular system. However, in the successful case of industrial symbiosis, the Kalundborg symbiosis park reduced CO2 emissions by 635,000 tons; the British sugar industry produced less than 200 grams of waste per ton of sugar; and the profit of Nanning Sugar increased by 60 million. We will use the successful industrial symbiosis model cases to bring to Taiwanese companies.

    MATERIALS AND METHODS
    However, in Taiwan, Taiwan Sugar company has multi-business including sugar refinery, livestock, agriculture and, biotechnology, etc., There are opportunities to develop by-product Industrial symbiosis among the business. In this study, the purpose is to find potential circulation paths through the exchange of resources between the Taiwan Sugar business or with outside industries to improve the circular benefits of resources and enhance environmental and economic benefits. First, through the material flow check, to determine the flow direction and quantity of resources, water, energy and material inputs and outputs of Taiwan Sugar Company's various businesses. In combination with design a resource cycle potential table that covers with the composition of the resource and the method of reuse. And through the literature to collect new reuse technologies and cases, to identify opportunities for resource link between the businesses to achieve higher economic value.

    RESULTS AND DISCUSSION
    The environmental and economic benefits of the new resource chain model will be assessed, using Eco-efficiency and Cost-Benefit Analysis, respectively. By converting by-products into raw material, the eco-efficiency calculations show the new circular of the sugar industry and the livestock industry, the ratio between total product volume and waste volume increased by 24.8% and 61.5%, respectively; the ratio between total revenue and waste volume increased by 23.3% and 79.5%, respectively. The Cost-Benefit Analysis of the manufacture of by-products into new products shows that the sugar industry by-product soot is made into the red brick of the construction industry with a profit of 5,302,330 NTD; the sugar industry ash replaces the cement component in the concrete hollow brick, and the profit is as high as 291,700,005 NTD. The sugar industry by-product bagasse was used for pulping and papermaking, and the profit was 19,411,770NTD. The sugar industry by-product molasses extracted ethylene oxide as a natural surfactant, with a profit of 35,301,000 NTD.

    CONCLUSION
    Through the study of Taiwan Sugar Company, we will identify new circular trends in the by-products of businesses to enhance value. However, using circular benefits to evaluate these potential new products, the results show that the new reuse approach benefits are increased. In the future, if they are implemented in enterprises or cooperate with outside companies, they can have higher benefits for the company.

    摘要 I 致謝 V 目錄 VI 表目錄 IX 圖目錄 X 第1章 緒論 1 第一節 研究動機 1 第二節 研究目的 5 第三節 研究架構與範圍 6 第2章 文獻回顧 7 第一節 產業共生 7 2.1.1概述 7 2.1.2國際糖業資源鏈結情況 10 2.1.3國際生物精煉廠 26 第二節 產業製程副產物 28 2.2.1製造過程 28 2.2.2產出副產物及加工再利用 29 第三節 副產物循環再利用技術 30 2.3.1產生資源鏈結運用方法 30 2.4.1環境效益 35 2.4.2經濟效益 36 2.4.3生態效率(Eco-efficiency) 37 2.4.4成本效益分析 39 第3章 研究方法 40 第一節 研究流程 40 第二節 台糖公司 42 3.2.1企業簡介 42 3.2.2環境足跡 46 3.2.3事業部循環模式 47 第三節 台糖整體物質流盤查 48 3.3.1整理能資源投入和產出資料 48 3.3.2繪製物質流系統圖 49 第四節 建製資源成分分類表和再利用方法表 50 3.4.1設計資源成分分類表 50 第五節 國際案例方法及技術分析 52 第六節 資源循環效益分析 53 3.6.1生態效率分析 53 第4章 結果與討論 57 第一節 事業部物質流分析 57 4.1.1砂糖事業部 57 4.1.2畜殖事業部 63 4.1.3精緻農業事業部 67 4.1.4生物科技事業部 68 4.1.5有機農業 69 第二節 副產物成分及再利用方法表設計 70 4.3.1設計副產物成份分類表 70 4.3.2設計循環再利用方式表 73 第三節 產業共生案例和副產物再利用技術彙整分析 74 4.3.1糖業產業共生案例與生物精煉技術 74 4.3.2新循環潛力方法-台糖內部和外部產業鏈結 77 4.3.3舊模式和新循環模式比較 80 第四節 循環再利用效益分析 83 4.4.1生態效率-產業產量 83 4.4.2生態效率-產業營收 84 4.4.3成本效益分析-煙灰再利用 85 4.4.4成本效益分析-甘蔗渣再利用 93 4.4.5成本效益分析-糖蜜再利用 94 4.4.6成本效益分析-豬血再利用 96 第5章 結論與建議 98 參考文獻 100 附錄 105 附錄一 副產物傳統(現況)和新循環再利用方法及售價比較 105 附錄二 副產物再循環的生態效率 106 附錄三 副產物製成新循環產品的成本效益 108 附錄四 副產物循環再利用至產業的文獻彙整 109

    1.A snapshot of British Sugar from 1912 to today | Our history. Br. Sugar. URL https://www.britishsugar.co.uk (accessed 4.16.19).
    2.Ashton, W., 2008. Understanding the Organization of Industrial Ecosystems. J. Ind. Ecol. 12, 34–51.
    3.Baas, L., 1998. Cleaner production and industrial ecosystems, a Dutch experience. J. Clean. Prod. 6, 189–197.
    4.Banat, I.M., Makkar, R.S., Cameotra, S.S., 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53, 495–508.
    5.Brazilian Sugar Companies, URL https://www.linkedin.com/pulse/5brazilian-sugar-companies-incs-brazil-sugar-supplier (accessed 5.16.19).
    6.Banat, I.M., Satpute, S.K., Cameotra, S.S., Patil, R., Nyayanit, N.V., 2014. Cost effective technologies and renewable substrates for biosurfactants’ production. Front. Microbiol. 5.
    7.Botha, T., von Blottnitz, H., 2006. A comparison of the environmental benefits of bagasse-derived electricity and fuel ethanol on a life-cycle basis. Energy Policy 34, 2654–2661.
    8.Bozell, J.J., 2008. Feedstocks for the Future – Biorefinery Production of Chemicals from Renewable Carbon. CLEAN – Soil Air Water 36, 641–647.
    9.Cameotra, S.S., Makkar, R.S., Kaur, J., Mehta, S.K., 2010. Synthesis of Biosurfactants and Their Advantages to Microorganisms and Mankind, in: Sen, R. (Ed.), Biosurfactants, Advances in Experimental Medicine and Biology. Springer New York, New York, NY, pp. 261–280.
    10.Cárdenas-Fernández, M., Bawn, M., Hamley-Bennett, C., Bharat, P.K.V., Subrizi, F., Suhaili, N., Ward, D.P., Bourdin, S., Dalby, P.A., Hailes, H.C., Hewitson, P., Ignatova, S., Kontoravdi, C., Leak, D.J., Shah, N., Sheppard, T.D., Ward, J.M., Lye, G.J., 2017. An integrated biorefinery concept for conversion of sugar beet pulp into value-added chemicals and pharmaceutical intermediates. Faraday Discuss. 202, 415–431.
    11.Chertow, M.R., 2000. INDUSTRIAL SYMBIOSIS: Literature and Taxonomy. Annu. Rev. Energy Environ. 25, 313–337.
    12.Chertow, M.R., Lombardi, D.R., 2005. Quantifying Economic and Environmental Benefits of Co-Located Firms. Environ. Sci. Technol. 39, 6535–6541.
    13.Demirbas, A., 2005. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog. Energy Combust. Sci. 31, 171–192.
    14.Demirbas, A., 2004. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230.
    15.Dick, I.P., Scott, R.C., 1992. Pig Ear Skin as an In-vitro Model for Human Skin Permeability. J. Pharm. Pharmacol. 44, 640–645.
    16.Fang, K., Heijungs, R., de Snoo, G.R., 2014. Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family. Ecol. Indic. 36, 508–518.
    17.Ferreira, A.F., 2017. Biorefinery Concept, in: Rabaçal, M., Ferreira, A.F., Silva, C.A.M., Costa, M. (Eds.), Biorefineries: Targeting Energy, High Value Products and Waste Valorisation, Lecture Notes in Energy. Springer International Publishing, Cham, pp. 1–20.
    18.Geisy Guia Deli, 2017, Sugar Day.
    19.Geng, Y., Doberstein, B., 2008. Developing the circular economy in China: Challenges and opportunities for achieving “leapfrog development.” Int. J. Sustain. Dev. World Ecol. 15, 231–239.
    20.Gheewala, S., Bonnet, S., Prueksakorn, K., Nilsalab, P., 2011. Sustainability Assessment of a Biorefinery Complex in Thailand. Sustainability 3.
    21.Global Biosurfactants Market Size Value | Industry Trends Report, 2020 [WWW Document], n.d. URL https://www.grandviewresearch.com/industry-analysis/biosurfactants-industry (accessed 6.23.19).
    22.Graedel, T.E.H., Allenby, B.R., n.d. Industrial Ecology and Sustainable Engineering: International Edition 8.
    23.Guojun Ji, 2008. Closed-loop supply chains based on by-product exchange, in: 2008 IEEE International Conference on Service Operations and Logistics, and Informatics. Presented at the 2008 IEEE International Conference on Service Operations and Logistics, and Informatics, pp. 2405–2410.
    24.Hoekstra, A.Y., Wiedmann, T.O., 2014. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117.
    25.Industrial Symbiosis in a Circular Economy, 2017. . EnergyCrossroadsDenmark. URL http://www.energycrossroads.org/industrial-symbiosis-circular-economy/ (accessed 4.15.19).
    26.Industrial Symbiosis: One man’s waste.... Resour. Mag. URL https://resource.co/article/industrial-symbiosis-one-mans-waste-11903 (accessed 4.15.19).
    27.Innovation - Raizen 2017/2018 Annual Report. URL https://www.raizen.com.br/relatorioanual/en/innovation.html (accessed 6.12.19).
    28.Jensen, P.D., Basson, L., Hellawell, E.E., Bailey, M.R., Leach, M., 2011. Quantifying ‘geographic proximity’: Experiences from the United Kingdom’s National Industrial Symbiosis Programme. Resour. Conserv. Recycl. 55, 703–712.
    29.Kharel, G.P., Charmondusit, K., 2008. Eco-efficiency evaluation of iron rod industry in Nepal. J. Clean. Prod. 16, 1379–1387.
    30.Lieder, M., Rashid, A., 2016. Towards circular economy implementation: a comprehensive review in context of manufacturing industry. J. Clean. Prod. 115, 36–51.
    31.Mabee, W.E., Gregg, D.J., Saddler, J.N., 2005. Assessing the Emerging Biorefinery Sector in Canada, in: Davison, B.H., Evans, B.R., Finkelstein, M., McMillan, J.D. (Eds.), Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, ABAB. Humana Press, Totowa, NJ, pp. 765–778.
    32.Menon, V., Rao, M., 2012. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550.
    33.Nguyen, T.L.T., Gheewala, S.H., Bonnet, S., 2008. Life cycle cost analysis of fuel ethanol produced from cassava in Thailand. Int. J. Life Cycle Assess. 13, 564–573.
    34.Our Businesses | Cosan Limited [WWW Document], n.d. URL http://ir.cosanlimited.com/enu/our-businesses (accessed 5.18.19).
    35.Paquin, R.L., Howard‐Grenville, J., 2012. The Evolution of Facilitated Industrial Symbiosis. J. Ind. Ecol. 16, 83–93.
    36.Park, H.-S., Behera, S.K., 2014. Methodological aspects of applying eco-efficiency indicators to industrial symbiosis networks. J. Clean. Prod. 64, 478–485.
    37.Parks, E., Doyle, B., Lowe, E.A., Moran, S.R., Holmes, D.B., Parks, E., Doyle, B., Lowe, E.A., Moran, S.R., Holmes, D.B., Burns, S., Dale, D., Gertler, N., 1996. Prepared by.
    38.Sahu, O., 2018. Assessment of sugarcane industry: Suitability for production, consumption, and utilization. Ann. Agrar. Sci. 16, 389–395.
    39.Santos, V.E.N., Magrini, A., 2018. Biorefining and industrial symbiosis: A proposal for regional development in Brazil. J. Clean. Prod. 177, 19–33.
    40.São Martinho - Açúcar [WWW Document], n.d. URL https://www.saomartinho.com.br/show.aspx?idMateria=ZckQKF8w0xwhJfhi6g0X0g== (accessed 5.18.19).
    41.SãoMartinho -Businesses. URL https://www.saomartinho.com.br/show.aspx?idMateria=rk2CGXH5SOIFTobanx1b+g== (accessed 6.11.19).
    42.Sarkis, J., 2017. Greener Manufacturing and Operations: From Design to Delivery and Back. Routledge.
    43.Schaltegger S., Lüdeke-Freund F., Hansen E.G., 2012. Business Cases for Sustainability: The Role of Business Model Innovation for Corporate Sustainability (SSRN Scholarly Paper No. ID 2010510). Social Science Research Network, Rochester, NY.
    44.Short, S.W., Bocken, N.M.P., Barlow, C.Y., Chertow, M.R., 2014. From Refining Sugar to Growing Tomatoes. J. Ind. Ecol. 18, 603–618.
    45.Silalertruksa, T., Pongpat, P., Gheewala, S.H., 2017. Life cycle assessment for enhancing environmental sustainability of sugarcane biorefinery in Thailand. J. Clean. Prod., Towards eco-efficient agriculture and food systems: selected papers addressing the global challenges for food systems, including those presented at the Conference “LCA for Feeding the planet and energy for life” (6-8 October 2015, Stresa & Milan Expo, Italy) 140, 906–913.
    46.Surfactants Market by Application & Type - Global Forecast 2021 | MarketsandMarketsTM | Last Updated on June-2019.URL https://www.marketsandmarkets.com/Market-Reports/biosurfactants-market-493.html (accessed 6.23.19).
    47.Tanger, P., Field, J.L., Jahn, C.E., DeFoort, M.W., Leach, J.E., 2013. Biomass for thermochemical conversion: targets and challenges. Front. Plant Sci. 4.
    48.Tao, Y., Evans, S., Wen, Z., Ma, M., 2019. The influence of policy on industrial symbiosis from the Firm’s perspective: A framework. J. Clean. Prod. 213, 1172–1187.
    49.WWF Living Planet Report - Summary. URL http://europe.nxtbook.com/nxteu/wwfintl/livingplanet_summary/index.php#/6 (accessed 4.11.19).
    50.Yang, S., Feng, N., 2008. A case study of industrial symbiosis: Nanning Sugar Co., Ltd. in China. Resour. Conserv. Recycl. 52, 813–820.
    51.Yin, C.-Y., Lee, L.Y., 2019. Teaching chemical engineering students industrial symbiosis using online resources: A Singapore case study. Educ. Chem. Eng.
    52.Zhu, Q., Cote, R.P., 2004. Integrating green supply chain management into an embryonic eco-industrial development: a case study of the Guitang Group. J. Clean. Prod., Applications of Industrial Ecology 12, 1025–1035.
    53.น้ำตาล ลิน : Lin Sugar : กลุ่มบริษัทน้ำตาลไทยรุ่งเรือง : Thai Roong Ruang Group of Companies [WWW Document], n.d. URL http://www.trrsugar.com/e_group_%20sugar.asp (accessed 6.18.19).
    54.Lin Sugar:Thai Roong Ruang Group of Companies.
    URL http://www.trrsugar.com/e_group_%20sugar.asp (accessed 6.18.19).
    55.丹麥卡倫堡——工業共生的生態之城_中國企業網
    URL http://www.zqcn.com.cn/qiye/201706/27/c497742.html (accessed 5.23.19).
    56.豬骨抗氧化肽的酶解製備研究--《現代食品科技》2006年03期. URL http://www.cnki.com.cn/Article/CJFD2006-GZSP200603044.htm (accessed 4.26.19).
    57.甘蔗| TEREOS. URL /en/our-activities/business-areas/sugarcane (accessed 5.18.19).
    58.豬皮水解膠原蛋白勝肽,變身平民版維骨力|農傳媒.
    URLhttps://www.agriharvest.tw/theme_data.php?theme=article&sub_theme=article&id=1416 (accessed 5.14.19).
    59.台灣糖業公司,2018,企業永續發展報告書
    60.台灣糖業公司, URL https://www.taisugar.com.tw/chinese/index.aspx
    61.台富水泥製品股份有限公司 產品分類
    URL http://www.cemestar.com.tw/front/bin/home.phtml
    62.中華紙漿股份有限公司,2018,企業永續報告書
    63.財政部台北國稅局 製造業原物料耗用通常水準調查報告,2014,磚窯業原物料耗用通常水準
    64.陳建宏,生態工業園區營運機制及產業共生之研究,2004,國立臺北科技大學碩士論文
    65.張雲翔,環保科技園區生態工業網絡建構之研究,2005,國立臺北科技大學碩士論文
    66.蔗蜜坊Melasse. URL https://www.melasse.com.tw/store.aspx
    67.經濟部統計處,工業產銷存動態調查產品統計,2018,水泥製造業
    68.經濟部統計處,工業產銷存動態調查產品統計,2018,紙張製造業
    69.經濟部統計處,工業產銷存動態調查產品統計,2018,黏土建築材料製造業

    下載圖示 校內:2020-09-30公開
    校外:2020-09-30公開
    QR CODE