| 研究生: |
施昱任 Shih, Yu-Jen |
|---|---|
| 論文名稱: |
以聯氨製備高品質界面層應用於鍺基板電容器與場效電晶體之研究 Investigation of high-quality interfacial layer formed by hydrazine (N2H4) on Ge capacitors and FETs |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 鍺 、界面層 、聯氨 、氮氧化鍺 、鰭式電晶體 、閘極環繞式電晶體 |
| 外文關鍵詞: | Germanium, interfacial layer, hydrazine, GeON, FinFET, GAAFET |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究以原子層沉積技術沉積高介電係數氧化層及其與鍺基板之界面層製備低等效氧化層厚度金氧半電容器與電晶體,為延續摩爾定律與提升元件的特性,需將電晶體不斷地微縮,作為閘極氧化層的二氧化矽亦須不斷地減薄,然而這也同時間提高了閘極漏電流與降低元件可靠度,因此元件的材料與結構必須隨之改變。鍺基板擁有較矽基板較高的載子遷移率,可以致使元件擁有較好的表現,此外,高介電常數材料如氧化鋁、二氧化鉿可代替傳統的二氧化矽作為介電層。事實上鍺基板與高介電常數材料之界面有許多界面缺陷產生,可能造成漏電路徑、通道散射效應導致元件的劣化。為解決此問題,在鍺基板與高界電常數氧化層中加入一界面氧化層並予以氮化,可以鈍化界面陷阱外,還可避免因高溫而析出的氧化鍺擴散至介電層。在傳統上是利用氮電漿或氨電漿來進行氮化製程,但過程中的電漿將會同時轟擊晶片表面,可能降低介面層之品質。因此本研究提出以聯氨作為一種替代方案以進行鈍化製程。
聯氨為一種高活性的化學材料,僅需給予熱能使之熱裂解便能提供氮化處理所需的氮原子,實現無電漿態的鈍化製程。透過原子層沉積技術在鍺基板的表面進行氧化及氮化反應,形成厚度約為10Å氮氧化鍺的界面層,並與氧化鋁、二氧化鉿等高界電常數材料在同一腔體內完成沉積,以減少外界環境污染所造成的影響,最後沉積氮化鈦製成金氧半電容器,並將最佳的電容器條件應用於鰭式電晶體。
最後,我們將採用上述的閘極堆疊條件並應用於鍺基板鰭式電晶體和閘極環繞式電晶體,在P 型鰭式電晶體中,其展示了94.82 mv/dec.的次臨界擺幅,開關電流比為1.2x105。至於 N 型鰭式電晶體中,可觀察到次臨界擺幅為89.28 mv/dec.,開關電流比為2.5x104。閘極環繞式電晶體顯示了次臨界擺幅為80.57 mv/dec.,開關電流比為1.11x106。
In this thesis, we investigate the different high dielectric constant (high-k) materials and interfacial layers fabricated by atomic layer deposition (ALD) technique on Ge metal-oxide-semiconductor capacitors (MOSCAP) along with FinFETs. In order to follow Moore’s law and enhance the devices performance, not only do transistors need to be continuously scaled down, but SiO2, used as gate oxide layer, has to be thinned down. However, higher gate leakage current and lower reliability of devices come right after those benefits. As a result, the materials and structures should be modified with the technology nodes. Germanium has higher carrier mobility than silicon, which contributes to better devices performance. Additionally, high-k materials such like Al2O3 and HfO2 could replace traditional SiO2 as gate oxide layer with lower equivalent oxide thickness (EOT) . According to the advantages mentioned above, germanium and high-k materials seem to be outstanding candidates for conquering those obstacles while scaling. As a matter of fact, numerous defects existing in the interface between germanium and high-k materials probably lead to leakage path and severe channel scattering effect and thus devices degrades. To address this problem, we could apply an interfacial layer with nitrogen treatment on the interface between germanium substrate and high-k dielectrics to passivate interfacial traps and prevent germanium monoxide (GeOx) from diffusing because of high temperature. Traditionally, the nitridation process is completed by N2 plasma or NH3 plasma while the plasma is going to bombard the surface of the substrate, which might decrease the quality of the interfacial layer. Consequently, this research proposes an alternative approach to conduct the passivation process with hydrazine.
Hydrazine, a kind highly active chemical materials, needs only thermal energy to decompose and provides the nitrogen atoms in the plasma-free nitridation treatment. The oxidation and nitridation reaction are applied on the surface of germanium substrate to form a thickness of approximately 10Å germanium oxynitride (GeON) as interfacial layer through ALD. In the meanwhile, the high-k dielectrics, like Al2O3 and HfO2, are deposited in the ALD chamber so as to reduce the influence induced by outside environment. The fabrication of MOS capacitors is completed by TiN deposition, and then the optimized condition will be applied to FinFETs.
Finally, we adopted the high-k gate stacks and apply to Ge FinFET and gate-all-around FET (GAAFET). The electrical characteristics are studied in this thesis. We demonstrated subthreshold swing (S.S.) of 94.82 mv/dec. and Ion/Ioff ratio of 1.2x105 for Ge p-FinFET. As for NFET, the S.S. of 89.28 mv/dec. and Ion/Ioff ratio of 2.5x104 can be observed. Ge n-GAAFET exhibits S.S of 80.57 mv/dec, Ion/Ioff ratio of 1.11x106.
S. B. Samavedam et al., "Future Logic Scaling: Towards Atomic Channels and Deconstructed Chips," 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 1.1.1-1.1.10, doi: 10.1109/IEDM13553.2020.9372023.
Colinge, J. P., Greer, J. C., & Greer, J. (2016). Nanowire transistors: physics of devices and materials in one dimension. Cambridge University Press.
M. Heyns et al., "Advancing CMOS beyond the Si roadmap with Ge and III/V devices," 2011 International Electron Devices Meeting, Washington, DC, USA, 2011, pp. 13.1.1-13.1.4, doi: 10.1109/IEDM.2011.6131543.
A. Gill, C. Madhu and P. Kaur, "Investigation of short channel effects in Bulk MOSFET and SOI FinFET at 20nm node technology," 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 2015, pp. 1-4, doi: 10.1109/INDICON.2015.7443263.
Z. Ahmed et al., "Introducing 2D-FETs in Device Scaling Roadmap using DTCO," 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 22.5.1-22.5.4, doi: 10.1109/IEDM13553.2020.9371906.
W. Hu and F. Li, "Scaling Beyond 7nm Node: An Overview of Gate-All-Around FETs," 2021 9th International Symposium on Next Generation Electronics (ISNE), Changsha, China, 2021, pp. 1-6, doi: 10.1109/ISNE48910.2021.9493305.
K. -S. Lee, B. -D. Yang and J. -Y. Park, "Trench Gate Nanosheet FET to Suppress Leakage Current from Substrate Parasitic Channel," in IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 2042-2046, April 2023, doi: 10.1109/TED.2023.3249650.
C. -L. Chu et al., "Stacked Ge-Nanosheet GAAFETs Fabricated by Ge/Si Multilayer Epitaxy," in IEEE Electron Device Letters, vol. 39, no. 8, pp. 1133-1136, Aug. 2018, doi: 10.1109/LED.2018.2850366.
Y. Liu, L. Lang, Y. Chang, Y. Shan, X. Chen and Y. Dong, "Cryogenic Characteristics of Multinanoscales Field-Effect Transistors," in IEEE Transactions on Electron Devices, vol. 68, no. 2, pp. 456-463, Feb. 2021, doi: 10.1109/TED.2020.3041438.
G. D. Wilk, R. M. Wallace, J. M. Anthony; “High-κ gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics 15 May 2001; 89 (10): 5243–5275. https://doi.org/10.1063/1.1361065
Shinichi Takagi et al, “III–V/Ge channel MOS device technologies in nano CMOS era,” in Jpn. J. Appl. Phys. 54 06FA01, DOI:10.7567/JJAP.54.06FA01
K. J. Kuhn, "Considerations for Ultimate CMOS Scaling," in IEEE Transactions on Electron Devices, vol. 59, no. 7, pp. 1813-1828, July 2012, doi: 10.1109/TED.2012.2193129.
S. Takagi et al,” Device structures and carrier transport properties of advanced CMOS using high mobility channels,” Solid-State Electronics, Volume 51, Issue 4, Pages 526-536, 2007, https://doi.org/10.1016/j.sse.2007.02.017.
Y. X. Zheng et al., "In Situ Process Control of Trilayer Gate-Stacks on p-Germanium With 0.85-nm EOT," in IEEE Electron Device Letters, vol. 36, no. 9, pp. 881-883, Sept. 2015, doi: 10.1109/LED.2015.2459663.
S. -C. Lu, H. -C. Chang, T. -P. Chou and C. Liu, "First-Principles Study of GeO2/Ge Interfacial Traps and Oxide Defects," 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM), Berkeley, CA, USA, 2012, pp. 1-2, doi: 10.1109/ISTDM.2012.6222499.
K. Yamamoto, D. Wang and H. Nakashima, "Fermi level pinning alleviation at the TiN, ZrN, and HfN/Ge interfaces," 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore, 2014, pp. 91-92, doi: 10.1109/ISTDM.2014.6874625.
C. -C. Li et al., "Improved Electrical Characteristics of Ge MOS Devices with High Oxidation State in HfGeOx Interfacial Layer Formed by In Situ Desorption," in IEEE Electron Device Letters, vol. 35, no. 5, pp. 509-511, May 2014, doi: 10.1109/LED.2014.2310636.
K. Kita et al., "Comprehensive study of GeO2 oxidation, GeO desorption and GeO2-metal interaction -understanding of Ge processing kinetics for perfect interface control-," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1-4, doi: 10.1109/IEDM.2009.5424243.
J. Robertson and L. Lin, "Fermi level pinning in Si, Ge and GaAs systems - MIGS or defects," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1-4, doi: 10.1109/IEDM.2009.5424406.
Tomonori Nishimura, Koji Kita and Akira Toriumi, “A Significant Shift of Schottky Barrier Heights at Strongly Pinned Metal/Germanium Interface by Inserting an Ultra-Thin Insulating Film," Applied Physics Express, Volume 1, Number 5, Published 9 May 2008, DOI:10.1143/APEX.1.051406
Masaharu Kobayashi, Atsuhiro Kinoshita, K. Saraswat, H. . -S. P. Wong and Yoshio Nishi, "Fermi-level depinning in metal/Ge Schottky junction and its application to metal source/drain Ge NMOSFET," 2008 Symposium on VLSI Technology, Honolulu, HI, USA, 2008, pp. 54-55, doi: 10.1109/VLSIT.2008.4588561.
G. Thareja, M. Kobayashi, Y. Oshima, J. McVittie, P. Griffin and Y. Nishi, "Low Dit optimized Interfacial Layer using High-Density Plasma Oxidation and Nitridation in Germanium High-κ Gate stack," 2008 Device Research Conference, Santa Barbara, CA, USA, 2008, pp. 87-88, doi: 10.1109/DRC.2008.4800747.
K. Prabhakaran, T. Ogino, “Oxidation of Ge(100) and Ge(111) surfaces: an UPS and XPS study,” Applied Surface Science, Volume 325, Issue 3, Pages 263-271, 1995, https://doi.org/10.1016/0039-6028(94)00746-2.
R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, S. Takagi, “Impact of GeOx interfacial layer thickness on Al2O3/Ge MOS interface properties,” Applied Microelectronic Engineering, Volume 88, Issue 7, Pages 1533-1536, 2011, https://doi.org/10.1016/j.mee.2011.03.130.
S. -H. Yi, K. -S. Chang-Liao, C. -W. Hsu and J. Huang, "Improved Electrical Characteristics of ~0.5 nm EOT Ge pMOSFET With GeON Interfacial Layer Formed by NH3 Plasma and Microwave Annealing Treatments," in IEEE Electron Device Letters, vol. 39, no. 9, pp. 1278-1281, Sept. 2018, doi: 10.1109/LED.2018.2853592.
A. Skeparovski, D. Spassov, A. Paskaleva and N. Novkovski, "A case study of C-V hysteresis instability in metal-high-k-oxide-silicon devices with ZrO2/Al2O3/Zr2O2 stack as a charge trapping layer," 2017 IEEE 30th International Conference on Microelectronics (MIEL), Nis, Serbia, 2017, pp. 79-82, doi: 10.1109/MIEL.2017.8190073.
C. Palade, A. Slav, A. -M. Lepadatu, V. S. Teodorescu and M. L. Ciurea, "Charge storage properties of HfO2/Ge-HfO2/SiO2 trilayer structures," 2014 International Semiconductor Conference (CAS), Sinaia, Romania, 2014, pp. 59-62, doi: 10.1109/SMICND.2014.6966390.
K. H. Chiang, S. W. Lu, Y. H. Peng, C. H. Kuan, C. S. Tsai, “Characterization and modeling of fast traps in thermal agglomerating germanium nanocrystal metal-oxide-semiconductor capacitor,” in Journal of Applied Physics 1 July 2008; 104 (1): 014506. https://doi.org/10.1063/1.2953194
C. Le Royer et al., "Germanium/HfO2//TiN gate stacks for advanced nodes: influence of surface preparation on MOS capacitor characteristics," Proceedings of 35th European Solid-State Device Research Conference, 2005. ESSDERC 2005., Grenoble, France, 2005, pp. 97-100, doi: 10.1109/ESSDER.2005.1546594.
R. Zhang, N. Taoka, Po-Chin Huang, M. Takenaka and S. Takagi, "1-nm-thick EOT high mobility Ge n- and p-MOSFETs with ultrathin GeOx/Ge MOS interfaces fabricated by plasma post oxidation," 2011 International Electron Devices Meeting, Washington, DC, USA, 2011, pp. 28.3.1-28.3.4, doi: 10.1109/IEDM.2011.6131630.
W. P. Bai et al., "Ge MOS characteristics with CVD HfO/sub 2/ gate dielectrics and TaN gate electrode," 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407), Kyoto, Japan, 2003, pp. 121-122, doi: 10.1109/VLSIT.2003.1221115.
C. -T. Chung et al., "Epitaxial Germanium on SOI Substrate and Its Application of Fabricating High ION/IOFF Ratio Ge FinFETs," in IEEE Transactions on Electron Devices, vol. 60, no. 6, pp. 1878-1883, June 2013, doi: 10.1109/TED.2013.2259173.
Y. -J. Lee et al., "Ge GAA FETs and TMD FinFETs for the Applications Beyond Si—A Review," in IEEE Journal of the Electron Devices Society, vol. 4, no. 5, pp. 286-293, Sept. 2016, doi: 10.1109/JEDS.2016.2590580.
H. -H. Li, Y. -H. Lin, T. -Y. Tu and C. -H. Chien, "Improved Electrical Characteristics of Ge p-MOSFET with Ti-GeOx Interfacial Layer by in-situ Plasma-enhanced Atomic Layer Deposition," 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Seoul, Korea, Republic of, 2023, pp. 1-3, doi: 10.1109/EDTM55494.2023.10102932.
校內:2026-08-18公開