簡易檢索 / 詳目顯示

研究生: 曾育婕
Tseng, Yu-Chieh
論文名稱: 在體內製備內皮化的人工血管
Fabricating the Endothelialized Small-Sized Vascular Graft in vivo
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 57
中文關鍵詞: 自體生物膜管聚乙烯醇小管徑人工血管脂肪幹細胞內皮化血管內皮生長因子
外文關鍵詞: Autologous biotube, Poly(vinyl alcohol) (PVA), Small-sized vascular graft, Adipose stem cells (ADSCs), Endothelialization, Vascular endothelial growth factor (VEGF)
相關次數: 點閱:204下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小管徑的人工血管(<6釐米)取代通常應用於冠狀動脈旁路移植、周邊血管置換以及洗腎廔管。為了預防小管徑血管置換後再栓塞,自體內乳動脈和隱靜脈通常被拿來當作移植血管。但自體血管的數量和合適的尺寸有限,以及自體靜脈和旁路移植處之間因力學性質的差異而有形成動脈瘤的傾向。因此,合成高分子材料因為可調整的力學性質,例如Dacron和expanded polytetrafluoroethylene (ePTFE)而被用於血管取代移植物。然而因為內壁缺乏完整的內皮化以及順應性的差異導致小管徑高分子材料人工血管取代後的通透性不如預期。所以置備小管徑人工血管的相關研究持續在發展中。而本研究主要設計了有種植脂肪幹細胞的自體生物膜管,並進行兔子頸動脈的取代觀察,以對照力學性質類似人體動脈的合成材料組別,聚乙烯醇(poly(vinyl alcohol), PVA),並比較兩者在取代1個月及5個月的實驗結果。
    1. 自體生物膜管
    生物膜管是藉由植入管狀物至皮下後產生自體的人工血管組織。而在本研究中,會在兔子背部皮下植入直徑2毫米的矽膠管1個月。接著在生物膜管上種植脂肪幹細胞,並植入兔子的頸動脈1個月及5個月的時間,觀察脂肪幹細胞是否促進內壁內皮化。兔子犧牲後進行組織切片檢查,以螢光染色分別進行內皮細胞抗體CD31和vWF的觀察以及平滑肌細胞抗體α-SMA以及Myosin Heavy Chain (MHC)的觀察。同時也進行Masson和Van Gieson染色,觀察生物膜管的纖維組織及彈性纖維組織分佈構造。最後,也利用材料拉伸測試機進行生物膜管的力學性質測試。
    實驗結果顯示,生物膜管的彈性係數雖然小於頸動脈,但順應性大於頸動脈。另外,在種植脂肪幹細胞的生物膜管植入取代頸動脈的1個月後,從螢光染色結果觀察到脂肪幹細胞開始遷移至內管壁,並開始分化成類內皮細胞。而在5個月後,種植脂肪幹細胞的生物膜管中,內壁有連續排列的類內皮細胞以及管壁中層的平滑肌細胞和彈性纖維組織。然而,沒有種植脂肪幹細胞的生物膜管,觀察在1個月時,縫合處開始有阻塞的狀況發生。
    2. 合成材料,聚乙烯醇 (PVA)
    聚乙烯醇(PVA)水凝膠具有與人體動脈類似的力學性質,所以被應用於血管移植物。血管內皮生長因子(VEGF)常用於刺激血管內皮細胞的血管生成、增殖和遷移。因此在本研究中,將血管內皮生長因子(VEGF)固定在PVA的內表面,以增強體內內皮細胞的遷移和增殖進而改善合成材料缺乏內壁內皮化的狀況。
    在本研究中,7.5%(w/v)的PVA溶液經過三次來回的冷凍-室溫的循環交聯後,製備出內徑2毫米,管壁厚度1毫米的PVA管。然後,利用聚多巴胺將VEGF固定在PVA管的內壁上。接著,將PVA/VEGF管植入兔子的頸動脈進行取代1個月及5個月的時間,並利用超音波系統觀察血管取代的通暢性。
    實驗結果顯示,PVA管的彈性係數小於頸動脈,可承受的爆破壓約為165毫米汞柱,並在植入取代1個月及5個月後仍保持通暢。然而,在PVA管的組別中,縫合部位有部分的凝血塊。另外,與植入1個月後的PVA管不同,利用標記內皮細胞的螢光染色中,PVA/VEGF管的內壁觀察到類內皮細胞。但PVA/VEGF管在植入5個月後,內壁上的類內皮細胞的覆蓋率並沒有增加。
    比較兩者的實驗結果,生物膜管及PVA管的彈性係數都小於兔子的頸動脈,但順應性都相較於市售的合成材料更接近動脈的順應性。而在血管內皮化的結果中,有種植脂肪幹細胞的生物膜管在取代5個月後,有形成類似動脈的結構,推論在更長期的植入下,可以血管再栓塞的狀況;反之,PVA/VEGF管的管壁內類內皮細胞的螢光表現沒有明顯的增加。在未來,生物膜管可藉由結合生物可降解的材料,增加管壁厚度,進一步進行大型動物的血管取代實驗,觀察在不同動物模型中,血管通透性及內皮化的狀況。

    Small-sized vascular replacements (<6 mm) are usually applied in coronary artery bypass, peripheral vascular replacement and dialysis fistula. In order to prevent restenosis after vascular replacement, autologous internal mammary arteries and saphenous veins are often used as donor grafts, but the numbers of suitable donor sites and blood vessels with matching size are limited. Also, autologous grafts from a venous site have a tendency for aneurysm formation because of a difference in mechanical integrity between the donor venous and recipient sites. Therefore, synthetic graft materials, such as Dacron and ePTFE have been considered for vascular replacement due to their ease of tailoring mechanical properties. However, the lack of functional endothelium and a compliance mismatch for small-sized vascular grafts result in a poor patency rate. Therefore, the study designed two types of small-sized vascular grafts, autologous biotube and synthetic poly(vinyl alcohol) graft for their potential applications as vascular graft.
    1. Autologous biotube:
    Biotube is an in vivo tissue engineered approached to grow autologous graft by implanting a rod subcutaneously. In this study, we embedded 2mm-diameter silicone rod into New Zealand white rabbits’ dorsal subcutaneous to grow biotubes for 4weeks. Then, the formation of functional endothelium alignment on the inner wall surface was accessed by seeding with adipose stem cells (ADSCs). These two groups, biotube and ADSCs-seeded biotube were implanted into the carotid artery for more than 1 month, respectively. The patency rates are observed by angiography, and the remodeling of endothelial cells are observed by the immunofluorescence staining.
    The results showed the mechanical properties of biotube could withstand the blood pressure in vivo. On the other hand, the ADSCs started differentiated into endothelial cell in the inner wall surface at 1 month implantation. Moreover, ADSCs-seeded biotube showed patency after 5 months implantation. The fluorescence staining results showed that ADSCs not only differentiated into the endothelial cells but also smooth muscle cells, which fabricated the complete construction of small sized vascular graft. However, the biotube groups were showed occlusion at the suture site after 3 months implantation. It could be speculated that the ADSCs-seeded small sized biotube vascular could decrease the rate of intimal hyperplasia for longer time implantation.

    2. Synthetic graft materials, Poly(vinyl alcohol) (PVA)
    Poly(vinyl alcohol) (PVA) hydrogel has mechanical properties that are similar to those of human arteries. It has thus been considered for vascular graft. Vascular endothelial growth factor (VEGF) is usually used to stimulate angiogenesis, proliferation and migration of vascular endothelial cells (ECs) in the previous studies. This study immobilized vascular endothelial growth factor (VEGF) on the inner surface of PVA to enhance the migration and proliferation of endothelial cells (ECs) in vivo.
    In this study, 7.5% (w/v) PVA was cross-linked via three freeze-thaw cycles to fabricate a PVA graft. Then, polydopamine was used to immobilize VEGF on the inner surface of the PVA graft. The PVA/VEGF graft was implanted in the carotid artery of a rabbit for 1 month. Patency was observed using an ultrasound system.
    The results show that the burst pressure of PVA/VEGF was 165 mmHg, and the graft remained patent for 1 month and 5 months post-implantation. However, there was some blood clots at the suture site in PVA graft group. Unlike PVA graft at 1 month post-implantation, EC markers were observed on the PVA/VEGF graft using fluorescence staining. However, the coverage of ECs on the inner surface of PVA/VEGF graft were not increased.

    Compared the results of both approaches, the elastic modulus of biotube and PVA graft are smaller than carotid artery. However, the compliance were higher than commercial synthetic materials. For the endothelialization results, ADSCs-seeded biotube was similar to artery structure after 5 months implantation. It speculated that the rate of restenosis would decrease for longer period implantation. Otherwise, the endothelial-like cell couldn’t increase at 5 months post-implantation. Therefore, biotube could combine with biodegradable materials to increase the wall thickness in the future. Further, biotube will implant in large animal models to investigate the patency and endothelialization.

    中文摘要 I ABSTRACT III ACKNOWLEDGEMENTS VI TABLE OF CONTENTS VII LIST OF FIGURES X LIST OF TABLES XII ABBREVIATIONS XIII CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.1.1 Aortic wall structures 1 1.1.2 Endothelialization of the graft 3 1.1.3 Compliance of the graft 3 1.1.4 The development of small-sized vascular graft 4 1.2 Autologous biotube 6 1.2.1 Adipose stem cells (ADSCs) seeded with biotube 7 1.3 Synthetic materials - Poly(vinyl alcohol) 8 1.3.1 Growth factors 10 1.6 Motivation and Aims 11 CHAPTER 2 MATERIALS AND METHODS 13 2.1 Flow chart of animal experiments 13 2.2 Autologous Biotube 14 2.2.1 Preparation of biotube 14 2.2.2 Isolation of ADSCs 15 2.2.3 ADSCs seeding biotube 16 2.2.4 Biotube implantation 17 2.2.5 Elastic modulus measurements 17 2.2.6 Immunofluorescence and immunohistochemistry staining 18 2.2.7 Statistics 19 2.3 PVA 20 2.3.1 Preparation of PVA tube 20 2.3.2 Polydopamine coating and Immobilization of VEGF 20 2.3.3 Imaging of Immobilized VEGF 20 2.3.4 PVA/VEGF tube implantation 21 2.3.5 Scanning electronic microscopy (SEM) analysis 22 2.3.6 Elastic modulus and burst pressure measurements 22 2.3.7 Immunofluorescence and immunohistochemistry staining 23 2.3.8 Statistics 24 CHAPTER 3 RESULTS 25 3.1 Autologous biotube 25 3.1.1 Elastic Modulus Measurements 25 3.1.2 Biotube implantation 26 3.1.3 Histological examination 28 3.2 Poly(vinyl alcohol) (PVA) 32 3.2.1 Imaging and quantification of immobilized VEGF 32 3.2.2 Mechanical properties 33 3.2.3 Surface evaluation (SEM) and graft implantation 34 3.2.4 Histological examination 36 CHAPTER 4 DISCUSSION 39 4.1 Mechanical properties 39 4.2 Endothelialization 40 4.3 Compared of ADSCs-seeded biotube and PVA/VEGF graft 44 4.4 Limitation and future works 45 CHAPTER 5 CONCLUSION 46 REFERENCES 47 CURRICULUM VITAE 56

    1. Writing Group, M., D. Mozaffarian, E.J. Benjamin, A.S. Go, D.K. Arnett, M.J. Blaha, S. Stroke Statistics, Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation, 2016. 133(4): p. e307-311.
    2. Lai, C.H., W.W. Lai, M.J. Chiou, L.M. Tsai, J.S. Wen, and C.Y. Li, Outcomes of coronary artery bypass grafting in patients with inflammatory rheumatic diseases: an 11-year nationwide cohort study. J Thorac Cardiovasc Surg, 2015. 149(3): p. 859-66 e1-2.
    3. Chang, C.H., J.W. Lin, J. Hsu, L.C. Wu, and M.S. Lai, Stent revascularization versus bypass surgery for peripheral artery disease in type 2 diabetic patients - an instrumental variable analysis. Sci Rep, 2016. 6: p. 37177.
    4. Holzapfel, G.A., T.C. Gasser, and R.W. Ogden, A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models. Journal of elasticity and the physical science of solids, 2000. 61(1): p. 1-48.
    5. Thomas, A.C., Targeted Treatments for Restenosis and Vein Graft Disease. ISRN Vascular Medicine, 2012. 2012: p. 23.
    6. Yasser Elsayed Mohammed, A.R., Saad Elzogby, Abdelrahman Aly and Mostafa Mokarab, Efficacy Of Drug Eluting Stents Versus Cobalat Chomium Stents In Small Coronary Artery Stenosis In Non Diabetic Patients Journal of American Science, 2015. 11(1): p. 78-87.
    7. Wu, H.C., T.W. Wang, P.L. Kang, Y.H. Tsuang, J.S. Sun, and F.H. Lin, Coculture of endothelial and smooth muscle cells on a collagen membrane in the development of a small-diameter vascular graft. Biomaterials, 2007. 28(7): p. 1385-92.
    8. Berglund, J.D. and Z.S. Galis, Designer blood vessels and therapeutic revascularization. Br J Pharmacol, 2003. 140(4): p. 627-36.
    9. Baird, R.N. and W.M. Abbott, Pulsatile blood-flow in arterial grafts. Lancet, 1976. 2(7992): p. 948-50.
    10. Abbott, W.M., J. Megerman, J.E. Hasson, G. L'Italien, and D.F. Warnock, Effect of compliance mismatch on vascular graft patency. J Vasc Surg, 1987. 5(2): p. 376-82.
    11. Sarkar, S., H.J. Salacinski, G. Hamilton, and A.M. Seifalian, The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg, 2006. 31(6): p. 627-36.
    12. Lee, S.J., J. Liu, S.H. Oh, S. Soker, A. Atala, and J.J. Yoo, Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials, 2008. 29(19): p. 2891-8.
    13. Enomoto, S., M. Sumi, K. Kajimoto, Y. Nakazawa, R. Takahashi, C. Takabayashi, M. Sata, Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material. J Vasc Surg, 2010. 51(1): p. 155-64.
    14. Pawlowski, K.J., S.E. Rittgers, S.P. Schmidt, and G.L. Bowlin, Endothelial cell seeding of polymeric vascular grafts. Front Biosci, 2004. 9: p. 1412-21.
    15. Abbott, W.M., A. Callow, W. Moore, R. Rutherford, F. Veith, and S. Weinberg, Evaluation and performance standards for arterial prostheses. J Vasc Surg, 1993. 17(4): p. 746-56.
    16. Bennion, R.S., R.A. Williams, B.E. Stabile, M.A. Fox, M.L. Owens, and S.E. Wilson, Patency of autogenous saphenous vein versus polytetrafluoroethylene grafts in femoropopliteal bypass for advanced ischemia of the extremity. Surg Gynecol Obstet, 1985. 160(3): p. 239-42.
    17. Desmet, W., J. Vanhaecke, M. Vrolix, F. Van de Werf, J. Piessens, J. Willems, and H. de Geest, Isolated single coronary artery: a review of 50,000 consecutive coronary angiographies. Eur Heart J, 1992. 13(12): p. 1637-40.
    18. Seifu, D.G., A. Purnama, K. Mequanint, and D. Mantovani, Small-diameter vascular tissue engineering. Nat Rev Cardiol, 2013. 10(7): p. 410-21.
    19. Hsu, S. and H. Kambic, On matching compliance between canine carotid arteries and polyurethane grafts. Artif Organs, 1997. 21(12): p. 1247-54.
    20. Fernandez, C.E., H.E. Achneck, W.M. Reichert, and G.A. Truskey, Biological and engineering design considerations for vascular tissue engineered blood vessels (TEBVs). Curr Opin Chem Eng, 2014. 3: p. 83-90.
    21. Barron, V., E. Lyons, C. Stenson-Cox, P.E. McHugh, and A. Pandit, Bioreactors for cardiovascular cell and tissue growth: a review. Ann Biomed Eng, 2003. 31(9): p. 1017-30.
    22. Conklin, B.S., E.R. Richter, K.L. Kreutziger, D.S. Zhong, and C. Chen, Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys, 2002. 24(3): p. 173-83.
    23. Cho, S.W., S.H. Lim, I.K. Kim, Y.S. Hong, S.S. Kim, K.J. Yoo, B.S. Kim, Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg, 2005. 241(3): p. 506-15.
    24. Rosenman, J.E., R.F. Kempczinski, W.H. Pearce, and E.B. Silberstein, Kinetics of endothelial cell seeding. J Vasc Surg, 1985. 2(6): p. 778-84.
    25. Hjortnaes, J., D. Gottlieb, J.L. Figueiredo, J. Melero-Martin, R.H. Kohler, J. Bischoff, E. Aikawa, Intravital molecular imaging of small-diameter tissue-engineered vascular grafts in mice: a feasibility study. Tissue Eng Part C Methods, 2010. 16(4): p. 597-607.
    26. Neff, L.P., B.W. Tillman, S.K. Yazdani, M.A. Machingal, J.J. Yoo, S. Soker, . . . G.J. Christ, Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J Vasc Surg, 2011. 53(2): p. 426-34.
    27. Karnik, S.K., B.S. Brooke, A. Bayes-Genis, L. Sorensen, J.D. Wythe, R.S. Schwartz, D.Y. Li, A critical role for elastin signaling in vascular morphogenesis and disease. Development, 2003. 130(2): p. 411-23.
    28. Patel, A., B. Fine, M. Sandig, and K. Mequanint, Elastin biosynthesis: The missing link in tissue-engineered blood vessels. Cardiovasc Res, 2006. 71(1): p. 40-9.
    29. Dukkipati, R., M. Peck, R. Dhamija, D.M. Hentschel, T. Reynolds, G. Tammewar, and T. McAllister, Biological grafts for hemodialysis access: historical lessons, state-of-the-art and future directions. Semin Dial, 2013. 26(2): p. 233-9.
    30. Daenens, K., S. Schepers, I. Fourneau, S. Houthoofd, and A. Nevelsteen, Heparin-bonded ePTFE grafts compared with vein grafts in femoropopliteal and femorocrural bypasses: 1- and 2-year results. J Vasc Surg, 2009. 49(5): p. 1210-6.
    31. Krawiec, J.T. and D.A. Vorp, Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials, 2012. 33(12): p. 3388-3400.
    32. Cho, S.W., I.K. Kim, J.M. Kang, K.W. Song, H.S. Kim, C.H. Park, B.S. Kim, Evidence for in vivo growth potential and vascular remodeling of tissue-engineered artery. Tissue Eng Part A, 2009. 15(4): p. 901-12.
    33. Nieponice, A., L. Soletti, J. Guan, Y. Hong, B. Gharaibeh, T.M. Maul, D.A. Vorp, In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng Part A, 2010. 16(4): p. 1215-23.
    34. He, W., A. Nieponice, L. Soletti, Y. Hong, B. Gharaibeh, M. Crisan, . . . D.A. Vorp, Pericyte-based human tissue engineered vascular grafts. Biomaterials, 2010. 31(32): p. 8235-44.
    35. Campbell, J.H., J.L. Efendy, and G.R. Campbell, Novel vascular graft grown within recipient's own peritoneal cavity. Circ Res, 1999. 85(12): p. 1173-8.
    36. Huang, H., Y.M. Zhou, H. Ishibashi-Ueda, K. Takamizawa, J. Ando, K. Kanda, . . . Y. Nakayama, In vitro maturation of "biotube" vascular grafts induced by a 2-day pulsatile flow loading. J Biomed Mater Res B Appl Biomater, 2009. 91(1): p. 320-8.
    37. Nakayama, Y., H. Ishibashi-Ueda, and K. Takamizawa, In vivo tissue-engineered small-caliber arterial graft prosthesis consisting of autologous tissue (biotube). Cell Transplant, 2004. 13(4): p. 439-49.
    38. Ma, N., Z. Wang, H. Chen, Y. Sun, H. Hong, Q. Sun, J. Liu, Development of the novel biotube inserting technique for acceleration of thick-walled autologous tissue-engineered vascular grafts fabrication. J Mater Sci Mater Med, 2011. 22(4): p. 1037-43.
    39. Watanabe, T., K. Kanda, M. Yamanami, H. Ishibashi-Ueda, H. Yaku, and Y. Nakayama, Long-term animal implantation study of biotube-autologous small-caliber vascular graft fabricated by in-body tissue architecture. J Biomed Mater Res B Appl Biomater, 2011. 98(1): p. 120-6.
    40. Oie, T., M. Yamanami, H. Ishibashi-Ueda, K. Kanda, H. Yaku, and Y. Nakayama, In-body optical stimulation formed connective tissue vascular grafts, "biotubes," with many capillaries and elastic fibers. J Artif Organs, 2010. 13(4): p. 235-40.
    41. Sakai, O., K. Kanda, K. Takamizawa, T. Sato, H. Yaku, and Y. Nakayama, Faster and stronger vascular "Biotube" graft fabrication in vivo using a novel nicotine-containing mold. J Biomed Mater Res B Appl Biomater, 2009. 90(1): p. 412-20.
    42. Nakayama, Y. and T. Tsujinaka, Acceleration of robust "biotube" vascular graft fabrication by in-body tissue architecture technology using a novel eosin Y-releasing mold. J Biomed Mater Res B Appl Biomater, 2014. 102(2): p. 231-8.
    43. Schaffler, A. and C. Buchler, Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells, 2007. 25(4): p. 818-27.
    44. Thomas, L.V., V. Lekshmi, and P.D. Nair, Tissue engineered vascular grafts--preclinical aspects. Int J Cardiol, 2013. 167(4): p. 1091-100.
    45. Bassaneze, V., V.G. Barauna, C. Lavini-Ramos, J. Kalil, I.T. Schettert, A.A. Miyakawa, and J.E. Krieger, Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev, 2010. 19(3): p. 371-8.
    46. Kim, D.H., S.J. Heo, S.H. Kim, J.W. Shin, S.H. Park, and J.W. Shin, Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol Lett, 2011. 33(12): p. 2351-9.
    47. DiMuzio, P. and T. Tulenko, Tissue engineering applications to vascular bypass graft development: The use of adipose-derived stem cells. Journal of Vascular Surgery, 2007. 45: p. 99a-103a.
    48. Gimble, J.M., A.J. Katz, and B.A. Bunnell, Adipose-derived stem cells for regenerative medicine. Circ Res, 2007. 100(9): p. 1249-60.
    49. Miranville, A., C. Heeschen, C. Sengenes, C.A. Curat, R. Busse, and A. Bouloumie, Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 2004. 110(3): p. 349-55.
    50. DiMuzio, P. and T. Tulenko, Tissue engineering applications to vascular bypass graft development: the use of adipose-derived stem cells. J Vasc Surg, 2007. 45 Suppl A: p. A99-103.
    51. Colazzo, F., F. Alrashed, P. Saratchandra, I. Carubelli, A.H. Chester, M.H. Yacoub, P. Somers, Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells. Growth Factors, 2014. 32(5): p. 139-49.
    52. Makarevich, P.I., M.A. Boldyreva, E.V. Gluhanyuk, A.Y. Efimenko, K.V. Dergilev, E.K. Shevchenko, Y.V. Parfyonova, Enhanced angiogenesis in ischemic skeletal muscle after transplantation of cell sheets from baculovirus-transduced adipose-derived stromal cells expressing VEGF165. Stem Cell Res Ther, 2015. 6: p. 204.
    53. Fischer, L.J., S. McIlhenny, T. Tulenko, N. Golesorkhi, P. Zhang, R. Larson, P.J. DiMuzio, Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J Surg Res, 2009. 152(1): p. 157-66.
    54. Shojaei, S., M. Tafazzoli-Shahdpour, M.A. Shokrgozar, and N. Haghighipour, Effects of mechanical and chemical stimuli on differentiation of human adipose-derived stem cells into endothelial cells. Int J Artif Organs, 2013. 36(9): p. 663-73.
    55. Kamoun, E.A., X. Chen, M.S. Mohy Eldin, and E.-R.S. Kenawy, Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arabian Journal of Chemistry, 2015. 8(1): p. 1-14.
    56. Vijayasekaran, S., J.H. Fitton, C.R. Hicks, T.V. Chirila, G.J. Crawford, and I.J. Constable, Cell viability and inflammatory response in hydrogel sponges implanted in the rabbit cornea. Biomaterials, 1998. 19(24): p. 2255-67.
    57. Kobayashi, M., Y.S. Chang, and M. Oka, A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials, 2005. 26(16): p. 3243-8.
    58. Jiang, H., G. Campbell, D. Boughner, W.K. Wan, and M. Quantz, Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med Eng Phys, 2004. 26(4): p. 269-77.
    59. Liu, Y., L.M. Geever, J.E. Kennedy, C.L. Higginbotham, P.A. Cahill, and G.B. McGuinness, Thermal behavior and mechanical properties of physically crosslinked PVA/Gelatin hydrogels. J Mech Behav Biomed Mater, 2010. 3(2): p. 203-9.
    60. Krumova, M., D. López, R. Benavente, C. Mijangos, and J.M. Pereña, Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol). Polymer, 2000. 41(26): p. 9265-9272.
    61. Ino, J.M., E. Sju, V. Ollivier, E.K. Yim, D. Letourneur, and C. Le Visage, Evaluation of hemocompatibility and endothelialization of hybrid poly(vinyl alcohol) (PVA)/gelatin polymer films. J Biomed Mater Res B Appl Biomater, 2013. 101(8): p. 1549-59.
    62. Fromageau, J., E. Brusseau, D. Vray, G. Gimenez, and P. Delachartre, Characterization of PVA cryogel for intravascular ultrasound elasticity imaging. IEEE Trans Ultrason Ferroelectr Freq Control, 2003. 50(10): p. 1318-24.
    63. Fromageau, J., J.L. Gennisson, C. Schmitt, R.L. Maurice, R. Mongrain, and G. Cloutier, Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings. IEEE Trans Ultrason Ferroelectr Freq Control, 2007. 54(3): p. 498-509.
    64. Duboeuf, F., A. Basarab, H. Liebgott, E. Brusseau, P. Delachartre, and D. Vray, Investigation of PVA cryogel Young's modulus stability with time, controlled by a simple reliable technique. Med Phys, 2009. 36(2): p. 656-61.
    65. King, D.M., C.M. Moran, J.D. McNamara, A.J. Fagan, and J.E. Browne, Development of a vessel-mimicking material for use in anatomically realistic Doppler flow phantoms. Ultrasound Med Biol, 2011. 37(5): p. 813-26.
    66. Miyake, H., H. Handa, Y. Yonekawa, W. Taki, Y. Naruo, S. Yamagata, . . . M. Suzuki, New small-caliber antithrombotic vascular prosthesis: experimental study. Microsurgery, 1984. 5(3): p. 144-50.
    67. Chaouat, M., C. Le Visage, W.E. Baille, B. Escoubet, F. Chaubet, M.A. Mateescu, and D. Letourneur, A Novel Cross-linked Poly(vinyl alcohol) (PVA) for Vascular Grafts. Advanced Functional Materials, 2008. 18(19): p. 2855-2861.
    68. Cutiongco, M.F., M. Kukumberg, J.L. Peneyra, M.S. Yeo, J.Y. Yao, A.J. Rufaihah, E.K. Yim, Submillimeter Diameter Poly(Vinyl Alcohol) Vascular Graft Patency in Rabbit Model. Front Bioeng Biotechnol, 2016. 4: p. 44.
    69. Madhurakkat Perikamana, S.K., J. Lee, Y.B. Lee, Y.M. Shin, E.J. Lee, A.G. Mikos, and H. Shin, Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules, 2015. 16(9): p. 2541-55.
    70. 刘宗光, 屈树新*, 翁杰, 聚多巴胺在生物材料表面改性中的应用. 化学进展, 2015. 27(2/3): p. 212-219.
    71. Morales-Ruiz, M. and W. Jiménez, Neovascularization, Angiogenesis, and Vascular Remodeling in Portal Hypertension, in Portal Hypertension: Pathobiology, Evaluation, and Treatment, A.J. Sanyal and V.H. Shah, Editors. 2005, Humana Press: Totowa, NJ. p. 99-112.
    72. Boontheekul, T. and D.J. Mooney, Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol, 2003. 14(5): p. 559-65.
    73. Soker, S., M. Machado, and A. Atala, Systems for therapeutic angiogenesis in tissue engineering. World J Urol, 2000. 18(1): p. 10-8.
    74. Poh, C.K., Z. Shi, T.Y. Lim, K.G. Neoh, and W. Wang, The effect of VEGF functionalization of titanium on endothelial cells in vitro. Biomaterials, 2010. 31(7): p. 1578-85.
    75. Takabatake, S., K. Hayashi, C. Nakanishi, H. Hao, K. Sakata, M.A. Kawashiri, M. Yamagishi, Vascular endothelial growth factor-bound stents: application of in situ capture technology of circulating endothelial progenitor cells in porcine coronary model. J Interv Cardiol, 2014. 27(1): p. 63-72.
    76. Laterreur, V., J. Ruel, F.A. Auger, K. Vallieres, C. Tremblay, D. Lacroix, L. Germain, Comparison of the direct burst pressure and the ring tensile test methods for mechanical characterization of tissue-engineered vascular substitutes. J Mech Behav Biomed Mater, 2014. 34: p. 253-63.
    77. Yamanami, M., H. Ishibashi-Ueda, A. Yamamoto, H. Iida, T. Watanabe, K. Kanda, Y. Nakayama, Implantation study of small-caliber "biotube" vascular grafts in a rat model. J Artif Organs, 2013. 16(1): p. 59-65.
    78. O'Flynn, P.M., E.T. Roche, and A.S. Pandit, Generating an ex vivo vascular model. ASAIO J, 2005. 51(4): p. 426-33.
    79. Podsiadlo, P., Z. Liu, D. Paterson, P.B. Messersmith, and N.A. Kotov, Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High-Strength Nanocomposite by Layer-by-Layer Assembly of Clay and L-3,4-Dihydroxyphenylalanine Polymer. Advanced Materials, 2007. 19(7): p. 949-955.
    80. Hwang, S.H., D. Kang, R.S. Ruoff, H.S. Shin, and Y.B. Park, Poly(vinyl alcohol) reinforced and toughened with poly(dopamine)-treated graphene oxide, and its use for humidity sensing. ACS Nano, 2014. 8(7): p. 6739-47.
    81. Kaushal, S., G.E. Amiel, K.J. Guleserian, O.M. Shapira, T. Perry, F.W. Sutherland, J.E. Mayer, Jr., Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med, 2001. 7(9): p. 1035-40.
    82. Niklason, L.E., J. Gao, W.M. Abbott, K.K. Hirschi, S. Houser, R. Marini, and R. Langer, Functional arteries grown in vitro. Science, 1999. 284(5413): p. 489-93.
    83. Hoerstrup, S.P., I. Cummings Mrcs, M. Lachat, F.J. Schoen, R. Jenni, S. Leschka, G. Zund, Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model. Circulation, 2006. 114(1 Suppl): p. I159-66.
    84. Zhao, Y., S. Zhang, J. Zhou, J. Wang, M. Zhen, Y. Liu, Z. Qi, The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials, 2010. 31(2): p. 296-307.
    85. Roh, J.D., R. Sawh-Martinez, M.P. Brennan, S.M. Jay, L. Devine, D.A. Rao, C.K. Breuer, Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A, 2010. 107(10): p. 4669-74.
    86. Mirensky, T.L., G.N. Nelson, M.P. Brennan, J.D. Roh, N. Hibino, T. Yi, C.K. Breuer, Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. J Pediatr Surg, 2009. 44(6): p. 1127-32; discussion 1132-3.
    87. Krawiec, J.T. and D.A. Vorp, Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials, 2012. 33(12): p. 3388-400.
    88. Huang HS, H.S., Current advances of stem cell-based approaches to tissue-engineered vascular grafts. OA Tissue Engineering, 2013. 1(1)(2).
    89. Furukoshi, M., T. Moriwaki, and Y. Nakayama, Development of an in vivo tissue-engineered vascular graft with designed wall thickness (biotube type C) based on a novel caged mold. J Artif Organs, 2015.
    90. Watanabe, T., K. Kanda, H. Ishibashi-Ueda, H. Yaku, and Y. Nakayama, Autologous small-caliber "biotube" vascular grafts with argatroban loading: a histomorphological examination after implantation to rabbits. J Biomed Mater Res B Appl Biomater, 2010. 92(1): p. 236-42.
    91. Liu, Y., N.E. Vrana, P.A. Cahill, and G.B. McGuinness, Physically crosslinked composite hydrogels of PVA with natural macromolecules: structure, mechanical properties, and endothelial cell compatibility. J Biomed Mater Res B Appl Biomater, 2009. 90(2): p. 492-502.
    92. Vrana, N.E., P.A. Cahill, and G.B. McGuinness, Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: effect of disturbed shear stress conditions. J Biomed Mater Res A, 2010. 94(4): p. 1080-90.
    93. Alexandre, N., I. Amorim, A.R. Caseiro, T. Pereira, R. Alvites, A. Rema, A.L. Luis, Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. Int J Pharm, 2016. 513(1-2): p. 332-346.
    94. Conconi, M.T., L. Borgio, R. Di Liddo, L. Sartore, D. Dalzoppo, P. Amista, C. Grandi, Evaluation of vascular grafts based on polyvinyl alcohol cryogels. Mol Med Rep, 2014. 10(3): p. 1329-34.
    95. Shin, Y.M., Y.B. Lee, S.J. Kim, J.K. Kang, J.C. Park, W. Jang, and H. Shin, Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts. Biomacromolecules, 2012. 13(7): p. 2020-8.
    96. Beckwith, K.M. and P. Sikorski, Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels. Biofabrication, 2013. 5(4): p. 045009.
    97. Tamura, K., H. Mizuno, K. Okada, H. Katoh, S. Hitomi, T. Teramatsu, T. Hino, Experimental application of polyvinyl alcohol-silica for small artificial vessels. Biomater Med Devices Artif Organs, 1985. 13(3-4): p. 133-52.
    98. Heath, D.E., Promoting Endothelialization of Polymeric Cardiovascular Biomaterials. Macromolecular Chemistry and Physics, 2017.
    99. Pennel, T., P. Zilla, and D. Bezuidenhout, Differentiating transmural from transanastomotic prosthetic graft endothelialization through an isolation loop-graft model. J Vasc Surg, 2013. 58(4): p. 1053-61.
    100. Pennel, T., D. Bezuidenhout, J. Koehne, N.H. Davies, and P. Zilla, Transmural capillary ingrowth is essential for confluent vascular graft healing. Acta Biomater, 2018. 65: p. 237-247.

    下載圖示 校內:2022-07-01公開
    校外:2023-02-07公開
    QR CODE