簡易檢索 / 詳目顯示

研究生: 翁維宏
Weng, Wei-Hung
論文名稱: 平面六連桿機構之分支辨識
Branch Identification of Planar Six-Bar Mechanisms
指導教授: 黃文敏
Hwang, Wen-Miin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 79
中文關鍵詞: 分支迴路缺陷
外文關鍵詞: defect, circuit, branch
相關次數: 點閱:110下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分支缺陷為機構在尺度合成過程中,最常發生的缺陷問題之一。若合成所得之機構在各指定通過位置之組合構形位於不同分支上,則在不同分支間,必有死點構形存在,使機構無法跨越死點運動到下一指定通過位置上,則稱此合成結果產生了分支缺陷。
    本文的目的在於為檢驗出分支缺陷之存在,對於合成後之機構,探討其迴路、分支與死點構形等特性,並提出一套迴路與分支辨識的方法。首先本文對於文獻中針對平面四連桿與六連桿機構,具代表性的迴路與分支辨識方法,整理為幾何法、解析法及數值法等三類,並比較歸納其優缺點與適用範圍。接著本文以速度瞬心曲線、耦桿點曲線、傳動角與死點構形之幾何特徵,以平面四連桿機構為出發點,進而延伸至平面六連桿機構,探討其分支特性及辨識指標。最後,本文提出一套數值分析方法,針對機構合成後,針對各個指定通過位置進行位置分析,若其所處分支具有端點,便搜尋該位置所在分支上兩端對應之死點位置,以及靠近死點位置時各桿角度之收斂特性,藉此特性便可檢驗合成後之機構所指定通過位置是否具有分支缺陷。文中並應用此方法在各型平面六連桿機構,完成各指定通過位置之組合構形的分支辨識。

    Branch defect is one of the major problems in the process of the dimensional synthesis of mechanisms. For a synthesized mechanism, if the assembly configurations of all specified positions do not fall on the same branch, the mechanism is said to have branch defect. The main purpose of this work is to propose criteria for the branch identification of mechanism synthesized. The existing methods for the circuit and branch identification of planar four-bar and six-bar mechanisms can be classified into three kinds, i.e., the geometric method, the analytic method and the numerical method. This study presents the advantages and disadvantages of these three kinds of methods in comparison. Based on the geometric feature of centrode, coupler curve, transmission angle and, dead-center configuration, a feasible criterion is proposed for the branch identification of some planar four-bar and six-bar mechanisms. This study also presents a numerical method for the branch identification of mechanisms. The position analysis of the mechanism synthesized starts from each specified position. If the branch exists ends, the two ends of the branch are dead-center positions. The analysis positions of all links on the two dead-center positions of a branch are found out for each specified position on its branch. The ways of approaching to the dead-center position and the values of angular positions of all links on the dead-center position are used for branch identification of mechanisms. Some examples are presented to illustrate the feasibility of the method proposed in this study.

    摘要.........................................................I 英文摘要....................................................II 誌謝.......................................................III 目錄........................................................IV 圖目錄......................................................VI 表目錄.......................................................X 第一章 前言.................................................1 第二章 平面連桿機構迴路與分支辨識之方法.....................5 2-1 辨識迴路與分支之幾何代數方法........................6 2-1-1 平面四連桿機構迴路與分支之辨識指標............6 2-1-2 平面六連桿機構迴路與分支之辨識指標...........12 2-2 分支辨識之解析法...................................22 2-3 機構迴路分析之數值法...............................26 2-4 各種迴路與分支辨識方法之比較.......................32 第三章 平面六連桿機構分支辨識..............................33 3-1 速度瞬心曲線與耦桿點曲線之分支特徵.................33 3-1-1 平面四連桿機構..............................33 3-1-2 平面六連桿機構..............................40 3-2 分支辨識之位置分析法...............................49 3-2-1 位置分析與分支辨識..........................49 3-2-2 Stephenson-I型機構..........................52 3-2-3 Stephenson-II型機構.........................60 3-2-4 Stephenson-III型機構........................63 3-2-5 Watt-I型機構................................70 第四章 結論................................................75 參考文獻....................................................77

    01. Balli, S. S. and Chand, S., “Defects in Link Mechanisms and Solution
    Rectification,” Mechanism and Machine Theory, Vol. 37, pp. 851-876, 2002.
    02. Chase, T. R. and Mirth, J. A., “Circuits and Branches of Single
    Degree-of-Freedom Planar Linkages,” ASME Transactions, Journal of Mechanical
    Design, Vol. 115, pp. 223-230, 1993.
    03. Chase, T. R. and Mirth, J. A., “Circuits Rectification for Four Precision
    Positions Synthesis of Four-Bar and Watt Six-Bar Linkages,” ASME
    Transactions, Journal of Mechanical Design, Vol. 117, pp. 612-619, 1995.
    04. Davis, H. P., Chase, T. R. and Mirth, J. A., “Circuit Analysis of Stephenson
    Chain Six-Bar Mechanisms,” Mechanism Synthesis and Analysis, ASME DE-Vol.
    70, pp. 349-358, 1994.
    05. Davis, H. P. and Chase, T. R., “Stephenson Chain Branch Analysis: Four
    Generic Stationary Configurations and One New Linkage Polynomial,” Mechanism
    Synthesis and Analysis, ASME DE-Vol. 70, pp. 359-367, 1994.
    06. Dhingra, A. K., Cheng, J. C. and Kohli, D., “Synthesis of Six-link,
    Slider-crank and Four-link Mechanisms for Function, Path and Motion
    Generation Using Homotopy with m-homogenization,” ASME Transactions, Journal
    of Mechanical Design, Vol. 116, pp. 1122-1131,1994.
    07. Krishnamurty, S. and Turcic, D. A., “A General Method of Determining and
    Eliminating Branching in Planar Multiloop Mechanisms,” ASME Transactions,
    Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp.
    412-422, 1988.
    08. Krishnamurty, S. and Turcic, D. A., “Branching Determination in Nondyadic
    Planar Multiloop Mechanisms,” ASME Transactions, Journal of Mechanisms,
    Transmissions, and Automation in Design, Vol. 114, pp. 245-250, 1992.
    09. Liu, A. X. and Yang, T. L., “Finding All Solutions to Unconstrained
    Nonlinear Optimization for Approximate Synthesis of Planar Linkages Using
    Continuation Method,” ASME Transactions, Journal of Mechanical Design, Vol.
    121, pp. 368-374, 1999.
    10. Mariappan, J. and Krishnamurty, S., “Determination of Branch Free and
    Circuit Free Solutions During Synthesis of Multiloop Mechanisms,” ASME
    Mechanism Synthesis and Analysis, DE-Vol. 70, pp. 329-336, 1994.
    11. Mirth, J. A. and Chase, T. R., “Circuit Analysis of Watt Chain Six-Bar
    Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 115, pp.
    214-222, 1993.
    12. Soni, A. H., Kim, H. S. and Hamid, S., “Synthesis of Six-Link Mechanisms for
    Point Path Generation,” J. Mechanisms, Vol. 6, pp. 447-461, 1971.
    13. Ting, K. L., “Branch and Dead Position Problems of N-bar Linkages,” ASME,
    Advances in Design Automation, Vol. 2, pp. 459-465, 1993.
    14. Ting, K. L. and Dou, X., “Classification and Branch Identification of
    Stephenson Six-Bar Chains,” Mechanism and Machine Theory, Vol. 31, No. 3,
    pp. 283-295, 1996.
    15. Watanabe, K. and Funabashi, H., “Kinematic Analysis of Stephenson’s
    Six-Link Mechanisms (1st Report, Discrimination of Composition Loops),”
    Bulletin of JSME, Vol. 27, No. 234, pp. 2863-2870, 1987.
    16. Waldron, K. J., “Elimination of the Branch Problem in Graphical Burmester
    Mechanism Synthesis for Four Finitely Separated Positions,” ASME
    Transactions, Journal of Engineering for Industry, Vol. 97, pp. 176-182,
    1976.
    17. Yan, H. S. and Chiou, S. T., “An Algorithm for the Optimal Synthesis of
    Complex Function Generations,” Engineering Optimization, Vol. 12, pp. 75-88,
    1987.
    18. Yan, H. S. and Wu, L. I., “On the Dead-Center Positions of Planar Linkage
    Mechanisms,” ASME Transactions, Journal of Mechanisms, Transmissions, and
    Automation in Design, Vol. 111, pp. 40-46, 1989.
    19. Yan, H. S. and Wu, L. I., “The Stationary Configurations of Planar Six-bar
    Kinematic Chains,” Mechanism and Machine Theory, Vol. 23, No. 4, pp.
    287-293, 1988.
    20. 李宏文, “機構運動及力量傳動性能探討,” 碩士論文, 國立成功大學機械工程學系,
    台南, 1993
    21. 柯平山, “平面四連桿和六連桿機構迴路與分支之辨識,” 碩士論文, 國立成功大學機
    械工程學系, 台南, 2002.
    22. 車慧中, “平面六連桿與空間四連桿機構分支問題之研究,” 碩士論文, 國立成功大學
    機械工程學系, 台南, 1991.
    23. 張敬宏, “平面連桿機構之迴路分析,” 碩士論文, 國立成功大學機械工程學系, 台南, 2000.

    下載圖示 校內:2004-07-10公開
    校外:2004-07-10公開
    QR CODE