簡易檢索 / 詳目顯示

研究生: 蘇奕瑋
Su, Yi-Wei
論文名稱: 混合射頻與可見光傳輸之無線網路中使用者滿意度導向之動態資源配置
On User Satisfaction-Oriented Dynamic Resource Allocation in Hybrid RF/VLC Networks
指導教授: 許靜芳
Hsu, Ching-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 56
中文關鍵詞: 可見光通訊射頻網路換手負擔用戶移動性用戶滿意度
外文關鍵詞: Visible light communication (VLC), Radio Frequency(RF), Handover Overhead, User Mobility, User Satisfaction
相關次數: 點閱:144下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球無線網路通訊的蓬勃發展,對無線通訊流量需求以指數級幅度爆炸式增長,此一趨勢將導致目前主要用來傳輸流量的無線電頻率波段負擔加重,在不久未來面對龐大的無線需求時,因其頻譜資源有限,將不敷使用,造成頻譜緊縮的問題,而無法提供完整服務。而為了解決這項議題,可見光通訊便被提出做為無線電頻譜緊縮危機之解決方案。
    由於可見光通訊與無線電頻率之頻譜沒有重疊,故可見光網路與無線電頻率網路兩者可混合並用,其異質化網路融合了兩者的優點,不僅提供了廣闊的覆蓋面積,也提升了系統的傳輸率,成為室內環境高速通訊的一個有利選擇。在先前的研究中,目的大多是最大化總流量或是用戶公平性、但是它們少有考慮到個別用戶之使用滿意度,因此本論文提出一個於動態環境且考慮換手負擔下、首先以最大化用戶滿意度為目的之資源配置演算法。除此之外,對於有剩餘資源之接取點,可根據不同策略進行剩餘資源再配置,以達到傳輸率或用戶公平性的再提升。

    Wi-Fi is the most widely used wireless communications technology. It is foreseeable that consistently relying on Wi-Fi only would result in spectrum crunch eventually. For the mitigation of the spectrum crisis, visible light communication (VLC) has become an emerging solution to tackle the trend of tremendously increasing demand for wireless and mobile data communications.
    Since there is no overlap between VLC and radio frequency (RF) bands, simultaneously enabling both access technologies can extend overall spectrum utilized by wireless communications. The heterogeneous network combines the advantages of both, providing not only wide coverage area but also high transmission rate, making it a favorable choice for high-speed communication in indoor environments. In the previous studies, most of them focus on throughput or fairness maximization. However, user satisfaction is also important. Therefore, we proposed a method that considers handover overhead in dynamic environment, aiming at user satisfaction maximization, and then residual resource allocation (RRA) for elevating system throughput or system fairness by arbitrary RRA strategy.

    摘要 III Abstract IV 致謝 V Contents VI List of Figures IX List of Tables X Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Visible Light Communication 3 2.2 Hybrid RF/VLC Network 3 2.3 Handover 4 2.3.1 Horizontal Handover 5 2.3.2 Vertical Handover 5 2.3.3 Handover Overhead and Transmission Efficiency 7 Chapter 3 Related Work 9 3.1 AP Selection 9 3.1.1 Jointly Optimized Assignment Strategy 9 3.1.2 Distance and Signal Strength Strategy 9 3.2 Resource Allocation 10 3.2.1 Equally Shared Strategy 11 3.2.2 Reciprocal Ratio of Specific Factor Strategy 12 Chapter 4 System Model and Problem Formulation 14 4.1 VLC Channel Model 14 4.1.1 VLC Channel Gain 14 4.1.2 VLC Signal-to-Interference-plus-Noise Ratio 15 4.1.3 VLC Achievable Data Rate 15 4.2 RF Channel Model 15 4.2.1 RF Channel Gain 16 4.2.2 RF Signal-to-Interference-plus-Noise Ratio 16 4.2.3 RF Achievable Data Rate 16 Chapter 5 Proposed Scheme 18 5.1 Motivation 18 5.2 Notation 19 5.3 Problem Formulation 20 5.4 Overall framework and Pre-Calculation Phase 21 5.5 Stage 1 – High Demand First Dynamic Resource Allocation (HDFDRA) 23 5.5.1 AP Selection Phase 23 5.5.2 Resource Allocation Phase 26 5.6 Stage 2 – Residual Resource Allocation 30 5.6.1 Maximization of System Throughput Strategy 32 5.6.2 Demand Proportional Strategy 34 5.7 Time Complexity Analysis 36 Chapter 6 Performance Evaluation 38 6.1 Parameter Settings 38 6.2 Performance Metrics 39 6.3 Simulation Results 40 6.3.1 Comparison in the General Scenario 40 6.3.2 Comparison in the Stress Test A: Restrict all UEs in Small Area 44 6.3.3 Comparison in the Stress Test B: Only Half of the UEs are Restricted in Small Area 48 Chapter 7 Conclusion 52 References 53

    [1] D. C. Sicker and L. Blumensaadt, “The wireless spectrum crunch,” in Fundamentals of 5G Mobile Networks, 1st ed., J. Rodriguez, Ed. West Sussex, U.K.: Wiley, 2015.
    [2] X. Wu, M. Safari and H. Haas, "Access Point Selection for Hybrid Li-Fi and Wi-Fi Networks," IEEE Trans. Commun., vol. 65, no. 12, pp. 5375-5385, Dec. 2017.
    [3] L. U. Khan, ‘‘Visible light communication: Applications, architecture, standardization and research challenges,’’ Digit. Commun. Netw., vol. 3, no. 2, pp. 78–88, May 2016.
    [4] X. Wu and H. Haas, “Load balancing for hybrid LiFi and WiFi networks: To tackle user mobility and light-path blockage,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1675–1683, Mar. 2020.
    [5] M. Rahaim, A. Vegni, and T. Little, “A hybrid radio frequency and broadcast visible light communication system,” in Proc. IEEE GC Wkshps, Dec. 2011, pp. 792–796
    [6] S. Shao et al., “An indoor hybrid WiFi-vlc Internet access system,” in Proc. IEEE 11th Int. Conf. MASS, Oct. 2014, pp. 569–574.
    [7] X. Li, R. Zhang, and L. Hanzo, “Cooperative load balancing in hybrid visible light communications and Wi-Fi,” IEEE Trans. Commun., vol. 63, no. 4, pp. 1319–1329, Apr. 2015.
    [8] F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delayguarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wireless Commun. (Accepted), vol. 14, Feb. 2015.
    [9] Y. Wang, D. A. Basnayaka, X. Wu, and H. Haas, “Optimization of load balancing in hybrid LiFi/RF networks,” IEEE Trans. Commun., vol. 65, no. 4, pp. 1708–1720, Apr. 2017.
    [10] Y. Wang, S. Videv, and H. Haas, “Dynamic load balancing with handover in hybrid Li-Fi and Wi-Fi networks,” in Proc. IEEE 25th Int. Symp. Pers., Indoor Mobile Radio Commun., Washington, DC, USA, 2014.
    [11] Y. Wang, D. A. Basnayaka, and H. Haas, “Dynamic load balancing for hybrid Li-Fi and RF indoor networks,” in Proc. IEEE Int. Conf. Commun. Workshop (ICCW), Jun. 2015, pp. 1422–1427.
    [12] P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2047–2077, 4th Quart., 2015.
    [13] H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightw. Technol., vol. 34, no. 6, pp. 1533–1544, Mar. 15, 2016.
    [14] R. Zhang et al., “Visible light communications in heterogeneous networks: Pave the way for user-centric design,” IEEE Wireless Commun., vol. 22, no. 2, pp. 8–16, Apr. 2015.
    [15] M. Kafafy, Y. Fahmy, M. Abdallah, and M. Khairy, “Power efficient downlink resource allocation for hybrid RF/VLC wireless networks,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2017, pp. 1–6.
    [16] A. E. Xhafa and O. K. Tonguz, “Reducing handover time in heterogeneous wireless networks,” in Proc. IEEE Veh. Technol. Conf. (VTC Fall), vol. 4. Oct. 2003, pp. 2222–2226.
    [17] M. Kassab, M. Bonnin, and A. Belghith, “Fast and secure handover in WLANs: An evaluation of the signaling overhead,” in Proc. Int. Conf. Comput., Netw. Commun., 2008, pp. 770–775.
    [18] H. Choi, “An optimal handover decision for throughput enhancement,” IEEE Commun. Lett., vol. 14, no. 9, pp. 851–853, Sep. 2010.
    [19] H. Kwon, K.-Y. Cheon, and A. Park, “Analysis of WLAN to UMTS Handover,” in IEEE Veh. Technol. Conf. (VTC-2007 Fall), Sept 2007, pp. 184–188.
    [20] H. Haas, L. Yin, C. Chen, S. Videv, D. Parol, E. Poves, H. Alshaer, and M. S. Islim, ‘‘Introduction to indoor networking concepts and challenges in LiFi,’’ J. Opt. Commun. Netw., vol. 12, no. 2, pp. A190–A203, Feb. 2020.
    [21] Y. Zhou, A. Pahwa, and S.-S. Yang, “Modeling weather-related failures of overhead distribution lines,” IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1683–1690, Nov. 2006.
    [22] X. Wu and H. Haas, “Mobility-aware load balancing for hybrid LiFi and WiFi networks,” IEEE/OSA J. Opt. Commun. Netw., vol. 11, no. 12, pp. 588–597, Dec. 2019.
    [23] S. Dimitrov and H. Haas, “Optimum signal shaping in OFDM-based optical wireless communication systems,” in Proc. IEEE Veh. Technol. Conf. (VTC Fall), Sep. 2012, pp. 1–5.
    [24] M. Kochláˇn, J. Miˇcek, and P. Ševˇcík, “2.4 GHz ISM band radio frequency signal indoor propagation,” in Proc. Federated Conf. Comput. Sci. Inf. Syst. (FedCSIS), Sep. 2014, pp. 1027–1034.
    [25] Irfan A, Sara O,Tamer K, et,al. “Characterization of the Indoor-outdoor Radio Propagation Channel at 2.4GHz”. GCC conference and exhibition, 2011, pp. 605-608
    [26] A. J. Goldsmith, Wireless Communications. Cambridge University Press, 2005.
    [27] Y. Meng, J. D. Li, H. Y. Li, and P. Liu, “Graph-based user satisfactionaware fair resource allocation in OFDMA femtocell networks,” IEEE Trans. Veh. Technol., vol. 64, no. 5, pp. 2165–2169, May 2015.
    [28] Z. Zeng, M. D. Soltani, Y. Wang, X. Wu, and H. Haas, “Realistic indoor hybrid WiFi and OFDMA-based LiFi networks,” IEEE Trans. Commun., vol. 68, no. 5, pp. 2978–2991, May 2020.
    [29] M. D. Soltani, X. Wu, M. Safari, and H. Haas, “Bidirectional user throughput maximization based on feedback reduction in LiFi networks,” IEEE Trans. Commun., vol. 66, no. 7, pp. 3172–3186, Jul. 2018.
    [30] X. Wu and D. C. O’Brien, “Parallel transmission LiFi,” IEEE Trans. Wireless Commun., early access, Jun. 19, 2020, doi: 10.1109/TWC.2020. 3001983.
    [31] A. B. Sediq, R. H. Gohary, R. Schoenen, and H. Yanikomeroglu, “Optimal tradeoff between sum-rate efficiency and jain’s fairness index in resource allocation,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3496–3509, Jul. 2013.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE