簡易檢索 / 詳目顯示

研究生: 吳冠毅
Wu, Kuan-Yi
論文名稱: 肘外甲機器之串聯彈性致動機構與驅動控制器設計
Mechanism and Controller Design of a Series Elastic Actuator in an Elbow Exoskeleton Robot
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 162
中文關鍵詞: 肘外甲復健機器模組串聯彈性致動器力量控制干擾觀察器阻抗控制器
外文關鍵詞: Rehabilitation robot, elbow exoskeleton module, series elastic actuator, impedance control, disturbance observer
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文開發一具兩自由度之肘外甲復健機器模組,並針對肘部屈伸關節設計阻抗控制器,使其能夠以具高度人機親和性之方式輔助肘關節僵化患者進行復健運動。不同於現存之肘外甲機器大多採用旋轉致動器配合減速齒輪的設計,本文所提出之肘外甲機器於肘部關節採用線性致動器及轉向機構的設計,並串接於採用旋轉致動器的肩部內外旋關節,以近似於人體肌肉運動之驅動模式驅動關節進行運動。驅動馬達安裝於上臂載器且緊密並排貼近於人體,可實現較為緊湊的機構設計,減少裝置體積。本文選用扭矩密度較高之步進馬達配合滾珠螺桿機構,實現串聯彈性致動器,以撓性驅動方式驅動外甲機器,利用光學尺感測串聯彈性致動器彈簧的變形量即可進行力量回授控制,使得外甲機器不需額外安裝昂貴的力量感測器即可達成人機互動控制功能。
    本文設計的肘外甲分為三個主要部分:將線性輸入轉旋轉輸出之轉向機構、具備力感測功能之串聯彈性致動器和高可靠度的內外旋機構。本文針對這三部分進行機構設計及分析,接著設計馬達驅動與感測電路及控制系統軟硬體架構,使肘外甲原型能夠結合嵌入式控制器以電腦進行控制。本文針對串聯彈性致動器及肘外甲機構系統進行建模並設計阻抗控制器,同時應用干擾觀察器於力量控制迴路,以強化力量控制表現。利用商用軟體MATLAB®中的Simulink®建立模擬模型,使本文能夠同時利用實驗及模擬方法驗證肘外甲阻抗控制性能。最後實現重量為1.5公斤的肘外甲機器模組,並可於0.5 Hz的逆向驅動操作下,輸出肘外甲扭矩值為0.033 Nm之高透明度表現。

    Exoskeleton robots have been demonstrated to assist the rehabilitation of patients with upper or lower limb disabilities. To make exoskeletons more friendly and accessible to patients, they need to be lightweight and compact without major performance tradeoffs. Existing upper-limb exoskeletons focus on the assistance of upper arms while the fine-motion rehabilitation of the forearm is often ignored. This thesis presents an elbow exoskeleton module with two degrees-of-freedom including flexion/extension motion of elbow joint (EFE) and internal/external rotation (IE). Using geared bearing, and slider crank mechanism, this exoskeleton can provide the complete motion assistance for the forearm. The optimized exoskeleton dimensions allow large torque and motion output while the motors are placed parallel to the upper arm. Thus better inertia properties can be achieved while lightweight and compactness are maintained.
    Linear series elastic actuator (SEA) for EFE motion with high torque-to-weight ratios is proposed to accurately measure and control the interaction force and impedance between exoskeleton and forearm. However, the variation of load-side mass influences the impedance control performance of the proposed exoskeleton with SEA. To achieve high-precision force control and dynamic transparency, the disturbance observer and feedforward controller are introduced. Experiments using a prototype were conducted to evaluate the impedance control performance of the exoskeleton. The resulting 1.5-kg exoskeleton can be used alone or easily in combination with other exoskeleton robots to provide various robot-aided upper limb rehabilitation.

    摘要 I Mechanism and Controller Design of a Series Elastic Actuator in an Elbow Exoskeleton Robot II 致謝 X 目錄 XI 表目錄 XV 圖目錄 XVII 符號說明 XXIV 第一章 緒論 1 1.1 背景介紹 1 1.1.1 上肢復健機器 1 1.1.2 人機互動 4 1.2 文獻回顧 6 1.2.1 人體上肢測量數據 6 1.2.2 肘外甲復健機器研究回顧 9 1.2.3 人機互動作用力回授方法回顧 14 1.2.4 順應性控制 15 1.3 研究動機與目標 18 1.4 論文架構 19 第二章 機構設計概念 20 2.1 前言 20 2.2 概念沿革 20 2.2.1 第一型(Type I) 自適型肘復健外甲之設計概念 20 2.2.2 轉向機構運動及力量分析 24 2.2.3 轉向機構尺寸最佳化 25 2.3 第二型(Type II) 自適型肘復健外甲之設計概念 26 2.3.1 Type II之設計概念 27 2.3.2 致動器評估 28 2.3.3 Type II之肩部內外旋機構設計 31 2.3.4 實體模型 32 2.4 第三型(Type III) 肘復健外甲之設計概念 33 2.4.1 Type III串聯彈性致動器 34 2.4.2 Type III之肩部內外旋機構設計 38 2.4.3 轉向機構尺寸最佳化 40 2.4.4 實體模型 42 2.5 本章小結 47 第三章 串聯彈性致動器驅動與建模 48 3.1 前言 48 3.2 串聯彈性致動器 48 3.2.1 軟硬體配置 48 3.2.2 馬達驅動公式推導 50 3.2.3 馬達驅動電路與參數鑑別 53 3.2.4 彈簧勁度設計與校正 57 3.2.5 速度估測 59 3.3 串聯彈性致動器模型 62 3.3.1 時域模型 62 3.3.2 s域模型 64 3.4 力量控制器設計 66 3.4.1 力量控制模型 66 3.4.2 力量控制系統鑑別 68 3.4.3 力量控制器增益最佳化 71 3.4.4 干擾觀察器設計 75 3.4.5 力量控制器性能驗證 78 3.5 本章小結 82 第四章 阻抗控制器設計 83 4.1 前言 83 4.2 阻抗控制器 83 4.2.1 串集式阻抗控制器 84 4.2.2 干擾觀察器式阻抗控制器 85 4.3 模擬模型建立與簡化 87 4.3.1 末端負載等效質量 87 4.3.2 末端負載重力補償模型 90 4.3.3 模擬模型建立 92 4.4 標稱模型選擇與控制器性能分析 95 4.4.1 靈敏度分析 95 4.4.2 穩定性分析 99 4.4.3 被動性分析 107 4.4.4 被動性曲線圖 117 4.5 本章小結 120 第五章 阻抗控制器性能分析與實驗驗證 121 5.1 前言 121 5.2 順向驅動位置追蹤 122 5.2.1 機械共振頻率 122 5.2.2 順向驅動實驗 124 5.2.3 人機互動作用力量測實驗 128 5.2.4 順向驅動頻寬分析 130 5.3 虛擬阻抗追蹤 131 5.3.1 虛擬阻抗自然振動時域響應 131 5.3.2 純勁度追蹤實驗 133 5.3.3 虛擬阻抗追蹤實驗驗證 136 5.4 逆向驅動實驗 141 5.5 本章小結 145 第六章 結論與未來工作 148 6.1 結論 148 6.2 未來工作 151 參考文獻 153 附錄 MATLAB®之Simulink®圖例 160

    [1] 衛生福利部,中華民國一零六年,「中華民國105年死因統計」。
    [2] 陳佳萬、張至宏、章勳與游文瑞,中華民國九十八年,「手肘關節復健機之研究與製作」,亞東技術學院。
    [3] Clarkson, H. M. (2000). Musculoskeletal assessment: joint range of motion and manual muscle strength. Lippincott Williams & Wilkins.
    [4] Perry, J. C., Rosen, J., & Burns, S. (2007). Upper-limb powered exoskeleton design. IEEE/ASME Transactions on Mechatronics, 12(4), 408-417.
    [5] Sicuri, C., Porcellini, G., & Merolla, G. (2014). Robotics in shoulder rehabilitation. Muscles, Ligaments and Tendons Journal, 4(2), 207.
    [6] Calanca, A., Muradore, R., & Fiorini, P. (2016). A review of algorithms for compliant control of stiff and fixed-compliance robots. IEEE/ASME Transactions on Mechatronics, 21(2), 613-624.
    [7] 李昱鋒 (2015)。使用串聯彈性驅動於仿人機器手腕之二維扭矩與阻抗控制。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
    [8] 簡隸 (2016)。使用串聯彈性致動器於肩外甲自適復健機器之阻抗控制。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
    [9] Garner, B. A. & Pandy, M. G. (1999). A kinematic model of the upper limb based on the visible human project (vhp) image dataset. Computer Methods in Biomechanics and Biomedical Engineering, 2(2), 107-124.
    [10] Chandler, R. F., Clauser, C. E., McConville, J. T., Reynolds, H. M., & Young, J. W. (1975). Investigation of inertial properties of the human body (No. AMRL-TR-74-137). AIR FORCE AEROSPACE MEDICAL RESEARCH LAB WRIGHT-PATTERSON AFB OH.
    [11] 王明揚、王茂駿、黃雪玲、游志雲、李永輝、何明泉與石裕川,中華民國八十五年,「勞工靜態與動態人體計測資料庫之測量(II)」,勞動部勞動及職業安全衛生研究所, IOSH85-H121。
    [12] Dewald, J., & Beer, R. F. (2001). Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle & nerve, 24(2), 273-283.
    [13] C.T. Pan, C. C. Chang, Y. S. Yang, S. Y. Wang, P. Y. Sun, Y. H. Kao, C. L. Lee, C. K. Yen, Y. L. Shiue, Y.J. Wang, “Development of multi-axis motor control system for lower limb exoskeleton rob,” 2017 International Conference on Innovation, Communication and Engineering (ICICE 2017), Kunming, Yunnan Province, P.R. China.
    [14] Nef, T., Guidali, M., & Riener, R. (2009). ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Applied Bionics and Biomechanics, 6(2), 127-142.
    [15] Kim, B., & Deshpande, A. D. (2017). An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. The International Journal of Robotics Research, 36(4), 414-435.
    [16] Crea, S., Cempini, M., Moisè, M., Baldoni, A., Trigili, E., Marconi, D., ... & Vitiello, N. (2016, June). A novel shoulder-elbow exoskeleton with series elastic actuators. In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Conference on (pp. 1248-1253). IEEE.
    [17] Otten, A., Voort, C., Stienen, A., Aarts, R., van Asseldonk, E., & van der Kooij, H. (2015). LIMPACT: A hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME transactions on mechatronics, 20(5), 2285-2298.
    [18] Kiguchi, K., Esaki, R., Tsuruta, T., Watanabe, K., & Fukuda, T. (2003, July). An exoskeleton system for elbow joint motion rehabilitation. In Advanced Intelligent Mechatronics, 2003. AIM 2003. Proceedings. 2003 IEEE/ASME International Conference on (Vol. 2, pp. 1228-1233). IEEE.
    [19] Balasubramanian, S., Wei, R., Perez, M., Shepard, B., Koeneman, E., Koeneman, J., & He, J. (2008, August). RUPERT: An exoskeleton robot for assisting rehabilitation of arm functions. In Virtual Rehabilitation, 2008 (pp. 163-167). IEEE.
    [20] Klein, J., Spencer, S., Allington, J., Bobrow, J. E., & Reinkensmeyer, D. J. (2010). Optimization of a parallel shoulder mechanism to achieve a high-force, low-mass, robotic-arm exoskeleton. IEEE Transactions on Robotics, 26(4), 710-715
    [21] Vitiello, N., Lenzi, T., Roccella, S., De Rossi, S. M. M., Cattin, E., Giovacchini, F., ... & Carrozza, M. C. (2013). NEUROExos: A powered elbow exoskeleton for physical rehabilitation. IEEE Transactions on Robotics, 29(1), 220-235.
    [22] Mao, Y., & Agrawal, S. K. (2012). Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 28(4), 922-931.
    [23] Ball, S. J., Brown, I. E., & Scott, S. H. (2007, September). MEDARM: a rehabilitation robot with 5DOF at the shoulder complex. In Advanced intelligent mechatronics, 2007 IEEE/ASME international conference on (pp. 1-6). IEEE.
    [24] Gijbels, D., Lamers, I., Kerkhofs, L., Alders, G., Knippenberg, E., & Feys, P. (2011). The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. Journal of neuroengineering and rehabilitation, 8(1), 5.
    [25] Zhuang, Q. X. & Chen, D. Z. (2016, October). Synthesis of Kinematic Compatible and Gravity Balanced Elbow Exoskeletons. 19th CSMMT Congress, Pingtung, Taiwan.
    [26] Proietti, T., Crocher, V., Roby-Brami, A., & Jarrassé, N. (2016). Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE reviews in biomedical engineering, 9, 4-14.
    [27] Moubarak, S., Pham, M. T., Pajdla, T., & Redarce, T. (2009). Design and modeling of an upper extremity exoskeleton. Paper presented at the World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany.
    [28] Huang, J., Huo, W., Xu, W., Mohammed, S., & Amirat, Y. (2015). Control of Upper-Limb Power-Assist Exoskeleton Using a Human-Robot Interface Based on Motion Intention Recognition. Automation Science and Engineering, IEEE Transactions on, 12(4), 1257-1270.
    [29] Ugurlu, B., Nishimura, M., Hyodo, K., Kawanishi, M., & Narikiyo, T. (2012, March). A framework for sensorless torque estimation and control in wearable exoskeletons. In Advanced Motion Control (AMC), 2012 12th IEEE International Workshop on (pp. 1-7). IEEE.
    [30] Chen, C. J., Cheng, M. Y., & Su, K. H. (2013, November). Observer-based impedance control and passive velocity control of power assisting devices for exercise and rehabilitation. In Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE (pp. 6502-6507). IEEE.
    [31] Oh, S., Kong, K., & Hori, Y. (2014). Design and analysis of force-sensor-less power-assist control. IEEE Transactions on Industrial Electronics, 61(2), 985-993.
    [32] Sariyildiz, E., & Ohnishi, K. (2015). On the explicit robust force control via disturbance observer. IEEE Transactions on Industrial Electronics, 62(3), 1581-1589.
    [33] Asai, Y., Yokokura, Y., & Ohishi, K. (2017). Mechanical Admittance Realization Control Based on Feedforward Compensation for Fine Realization of Impedance. IEEJ Journal of Industry Applications, 6(2), 83-90.
    [34] Choi, W., Won, J., Lee, J., & Park, J. (2017). Low stiffness design and hysteresis compensation torque control of SEA for active exercise rehabilitation robots. Autonomous Robots, 41(5), 1221-1242.
    [35] Lenzi, T., De Rossi, S., Vitiello, N., & Carrozza, M. (2011). Proportional EMG control for upper-limb powered exoskeletons. Paper presented at the Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE.
    [36] Dombre, E., Duchemin, G., Poignet, P., & Pierrot, F. (2003). Dermarob: A safe robot for reconstructive surgery. IEEE Transactions on Robotics and Automation, 19(5), 876-884.
    [37] Nollet, F., Floquet, T., & Perruquetti, W. (2008). Observer-based second order sliding mode control laws for stepper motors. Control engineering practice, 16(4), 429-443.
    [38] Delpoux, R., Bodson, M., & Floquet, T. (2014). Parameter estimation of permanent magnet stepper motors without mechanical sensors. Control Engineering Practice, 26, 178-187.
    [39] Mehling, J. S. (2015). Impedance control approaches for series elastic actuators (Doctoral dissertation, Rice University).
    [40] Ohmae, T., Matsuda, T., Kamiyama, K., & Tachikawa, M. (1982). A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives. IEEE Transactions on Industrial Electronics, (3), 207-211.
    [41] Tsuji, T., Hashimoto, T., Kobayashi, H., Mizuochi, M., & Ohnishi, K. (2009). A wide-range velocity measurement method for motion control. IEEE Transactions on industrial electronics, 56(2), 510-519.
    [42] Ohishi, K. (1983). Torque-speed regulation of DC motor based on load torque estimation. In IEEJ International Power Electronics Conference, IPEC-TOKYO, 1983-3 (Vol. 2, pp. 1209-1216).
    [43] Kong, K., Bae, J., & Tomizuka, M. (2012). A compact rotary series elastic actuator for human assistive systems. IEEE/ASME transactions on mechatronics, 17(2), 288-297.
    [44] Paine, N., Oh, S., & Sentis, L. (2014). Design and control considerations for high-performance series elastic actuators. IEEE/ASME Transactions on Mechatronics, 19(3), 1080-1091.
    [45] Oh, S., & Kong, K. (2017). High-precision robust force control of a series elastic actuator. IEEE/ASME Transactions on Mechatronics, 22(1), 71-80.
    [46] Sariyildiz, E. (2014). Advanced robust control via disturbance observer: implementations in the motion control framework. Doktora tezi, Keio University, Japonya, Agustos.
    [47] Zhang, T., & Huang, H. H. (2018). Lower-Back Robotic Exoskeleton. IEEE Robotics & Automation Magazine.
    [48] Colgate, J. E. (1988). The control of dynamically interacting systems (Doctoral dissertation, Massachusetts Institute of Technology).
    [49] Tagliamonte, N. L., & Accoto, D. (2014). Passivity constraints for the impedance control of series elastic actuators. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 228(3), 138-153.
    [50] 許登傑、陳文瑞、麥朝創與蔡孟勳,中華民國一零六年,「系統頻譜分析於工具機上的應用」,機械工業雜誌。
    [51] 徐嘉佑 (2013)。具兩共置撓性驅動軸機器手腕之動力與控制。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
    [52] 謝祥謙 (2015)。可穿戴式上肢外骨骼機構之最佳化設計。碩士論文。國立成功大學機械工程研究所。台南市,台灣。
    [53] Yu, H., Huang, S., Chen, G., Pan, Y., & Guo, Z. (2015). Human–robot interaction control of rehabilitation robots with series elastic actuators. IEEE Transactions on Robotics, 31(5), 1089-1100.
    [54] Haydon Kerk Pittman AMETEK Advanced Motion Solutions, Inc. (2017) "Linear Actuators - Hybrid Stepper" Available: https://www.haydonkerkpittman.com/products/linearactuators/hybridstepper [Accessed: April 2, 2018].
    [55] Renishaw, Inc. (2001) "ATOM™ 編碼器系列" Available: http://www.renishaw.com.tw/tw/atom-encoder-series--37564 [Accessed: April 2, 2018]
    [56] Oriental motor USA Corp. (2017) "Stepper Motors (Motor Only) - PKP Series 2-Phase" Available: http://www.orientalmotor.com/stepper-motors/2-phase-stepper-motors-pkp-series.html [Accessed: April 2, 2018].
    [57] MISUMI Group Inc. "技術情報" Available: https://tw.misumi-ec.com/tech/ [Accessed: April 2, 2018].
    [58] THK CO., LTD."產品訊息 -交叉滾柱軸承" Available: http://www.thk.com/?q=tw/node/3538 [Accessed: April 2, 2018]. Renishaw, Inc. (2001) "ATOM™ 編碼器系列" Available: http://www.renishaw.com.tw/tw/atom-encoder-series--37564 [Accessed: April 2, 2018]
    [59] CYBERDYN, Inc. (2018) ,"Products - single joint type" Available: https://www.cyberdyne.jp/english/products/SingleJoint.html [Accessed: June 4, 2018]
    [60] THERA TECH EQUIPMENT, Inc. (2018) "CPM Products – Kinetic 6080 Elbow CPM" Available: http://theratechequip.com/products/kinetec-elbow-cpm/ [Accessed: June 4, 2018]
    [61] Texas Instruments Inc. (1995) " OPA548 - High-Voltage, High-Current, Wide-Output-Voltage-Swing Power Operational Amplfier" Available: http://www.ti.com/product/OPA548?keyMatch=OPA548&tisearch=Search-EN-Everything [Accessed: April 2, 2018].

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE