簡易檢索 / 詳目顯示

研究生: 葉俊言
Yeh, Chun-Yen
論文名稱: 果蠅幼蟲肌肉收縮通過Dystroglycan與Laminin調控神經肌肉接頭的活動依賴性突觸生長
Muscle contraction acutely modulates the activity-dependent bouton formation of Drosophila larval neuromuscular junction through the Dystroglycan-Laminin axis
指導教授: 簡正鼎
Chien, Cheng-Ting
共同指導教授: 姜學誠
Chiang, Hsueh-Cheng
學位類別: 博士
Doctor
系所名稱: 醫學院 - 跨領域神經科學國際博士學位學程
TIGP on The Interdisciplinary Neuroscience
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 107
中文關鍵詞: 神經可塑性神經肌肉接點層粘連蛋白 肌糖蛋白聚醣
外文關鍵詞: Laminin, Dystroglycan, Neuromuscular junction, Synaptic plasticity, matrix metalloproteinase
相關次數: 點閱:59下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌肉通過肥大及其代謝變化來適應運動訓練。神經肌肉接頭 (NMJ)是運動神經元用來控制肌肉的收縮的軸突末端結構,許多研究顯示運動訓練亦可以造成NMJ的結構變化來適應運動訓練。然而,與運動造成的肌肉肥大不同,對於運動訓練如何改變NMJ的結構我們在分子機制上仍所知之甚少。果蠅幼蟲的爬行活動已被證實能造成其NMJ的結構改變,且急性刺激果蠅幼蟲的NMJ會觸發NMJ的結構新生,藉由量化急性刺激下NMJ觸發的新生結構,這篇論文試著使用果蠅幼蟲的神經肌肉系統為模型來研究NMJ的活動依賴性結構重塑。通過急性刺激NMJ活性並同時限制肌肉的收縮,我們發現肌肉的物理性運動收縮在NMJ的活動依賴性結構重塑上扮演協助的功能。過去已知層粘連蛋白A (LanA)能通過逆行信號(Retrograde signaling)的方式抑制果蠅幼蟲NMJ的生長,而位於NMJ上層粘連蛋白A的數量則會受到幼蟲長期爬行活動的調節。在這裡,我進一步確認層粘連蛋白A能抑制NMJ的活動依賴性結構重塑,並且發現對NMJ的急性刺激能快速降低層粘連蛋白A在NMJ的濃度。此外,若肌肉的物理性收縮被抑制則粘連蛋白A在NMJ的濃度將不再受NMJ的活性影響,這說明肌肉的物理性運動收縮可能直接影響粘連蛋白A在NMJ的濃度調控,並因而影響NMJ的活動依賴性結構重塑。分子機制上,層粘連蛋白A在NMJ的濃度調控需要基質金屬蛋白酶(Matrix metalloproteinase, MMP)的參與。且抑制MMP的活性或表現亦會干擾果蠅NMJ的活動依賴性結構重塑。肌營養不良蛋白聚糖(Dystroglycan)是一個富含於肌肉細胞膜上的層粘連蛋白受體,過去研究發現,dystroglycan及相關蛋白負責將肌肉收縮過程中產生的張力分配至胞外基質網路中。這邊證明了dystroglycan也參與了果蠅NMJ的活動依賴性結構重塑,且層粘連蛋白A的活動依賴性濃度調控亦需要dystroglycan。最後我們發現dystroglycan能影響MMP在NMJ的表現量,且dystroglycan和MMP之間協同參與NMJ的活動依賴性結構重塑與層粘連蛋白A的活動依賴性濃度調控。基於這些發現,本研究認為肌肉的物理性收縮可能經過dystroglycan來影響MMP於NMJ的活性與表現來調節層粘連蛋白A的濃度,並因此影響果蠅NMJ的活動依賴性結構重塑。

    Muscle adapts to exercise training through hypertrophy and changes to its metabolism. Exercise training remodels neuromuscular junctions (NMJs), through which motor neurons control muscle contraction. However, unlike muscle, how exercise contributes to the remodeling of NMJs remains poorly understood. Drosophila larval NMJs are capable of rapidly NMJ remodeling through formation of new boutons in response to acute spaced stimulation, providing a suitable platform to dissect the requirements and mechanisms of exercise-dependent NMJ remodeling. By utilizing physical and chemical ways to restrict the muscular contraction without affecting presynaptic stimulation, I show that the dynamic contraction of muscle is an important factor for activity-dependent new botuon formation at NMJs. Retrograde signaling of Laminin-A (LanA) suppresses the growth of larval NMJs, while the levels of LanA at NMJs were regulated by the long-term crawling activities of larvae. Here I confirm that LanA also suppresses the acute activity-dependent new bouton formation, and further demonstrate that the synaptic LanA levels can be rapidly downregulated by acute spaced stimulations. Moreover, the downregulation of LanA requires dynamic contraction of muscle, suggesting that LanA regulation is one of the mechanisms for dynamic muscular contraction to remodel NMJs. The activity-dependent downregulation of synaptic LanA requires matrix metalloproteinase (MMP) activity, which is also directly involved in new bouton induction. Dystroglycan (Dg), the Laminin receptor of the Dystrophin-glycoprotein complex, promotes activity-dependent new bouton formation through LanA regulation. Dg also genetically interact with MMP-1 to regulate new bouton induction, and Dg control the protein levels of MMP-1 at larval NMJs. Thus, I propose that dynamic muscle contraction promotes activity-dependent NMJ remodeling through LanA downregulation, which is mediated through Dg and MMP-1 at Drosophila larval NMJs.

    目次 TABLE OF CONTENTS I ABSTRACT V 中文摘要 VI 致 謝 VII Adaptation of the neuromuscular system to exercise 1 Drosophila larval NMJs as a model for studying synaptic development 2 Activity-dependent remodeling of Drosophila larval NMJs 4 DGC in transducing mechanical force and inducing muscular hypertrophy 6 Activity-dependent regulation of LanA in remodeling of Drosophila NMJs 7 Thesis statement 8 MATERIALS AND METHODS 9 Fly strains 9 Ex vivo stimulation protocols 9 Immunohistochemistry 10 Imaging and Data Analysis 11 Calcium imaging 12 RESULTS AND DISCUSSION 14 Induction of new boutons by spaced stimulation paradigm at Drosophila larval NMJs 14 Synchronized activation of motor neuron and muscle is required for new bouton induction for new bouton induction at Drosophila NMJ 15 Pharmacological muscle paralysis suppresses new bouton induction at NMJs 16 Dynamic muscle contraction is required for NMJ remodeling 17 Temporal overexpression of Laminin A (LanA) suppresses NMJ growth at late larval stages 19 LanA attenuates acute activity-dependent new bouton formation 20 The compartmentation of LanA patterns at Drosophila larval NMJs 21 Muscular contraction acutely regulates the synaptic level of LanA at NMJs 22 Different properties of new boutons induced in relaxed and restricted conditions 24 MMP-1 is required for activity-dependent LanA regulation and NMJ remodeling 26 Dystroglycan promotes activity-dependent new bouton formation through LanA regulation 27 Dystroglycan is required for activity-dependent regulation of synaptic LanA 28 Dystroglycan cooperates with Mmp1 in new bouton formation and LanA downregulation 30 CONCLUSION 32 FIGURES AND LEGENDS 37 Figure 1: New boutons were induced at Drosophila larval NMJs using spaced stimulation paradigm. 37 Figure 2: New bouton induction at larval NMJs scales with the number of stimulation pulses used in the SSP. 38 Figure 3: Removal of larval CNS during the SSP does not affect the new bouton induction. 40 Figure 4: Motor neuron but not muscle specific spaced stimulation with TrpA1 is able to induce new bouton formation. 41 Figure 5: Glutamate desensitization blocks the new bouton induction by the SSP. 43 Figure 6: Blebbistatin and physical restriction prevent the muscle contraction of larval fillets during the high potassium stimulation. 44 Figure 7: Pharmacological paralysis of muscle contraction suppresses the new bouton induction by the SSP. 45 Figure 8: Physical restriction of larval fillets during the SSP suppressed new bouton induction. 46 Figure 9: Physical restriction of larval fillets does not affect the presynaptic calcium response to high potassium stimulation. 47 Figure 10: Controlling the NMJ growth using muscular LanA overexpression with GAL80ts system. 48 Figure 11: Temporal overexpression of muscle LanA during late stage of larval development significantly affect the NMJ morphology. 50 Figure 12: LanA attenuates acute activity-dependent new bouton formation. 53 Figure 13: Construction of LanA-EGFP reporter allele and the expression pattern of LanA-EGFP at the cross-section of a NMJ. 55 Figure 14: The distribution of LanA signals at ridge and bouton region of NMJ. 57 Figure 15: Muscular LanA overexpression enhanced the LanA level at bouton regions. 59 Figure 16: Restriction of muscle contraction suppressed the SSP-induced downregulation of synaptic LanA. 61 Figure 17: Paralysis of muscle contraction with blebbistatin suppressed the SSP-induced downregulation of synaptic LanA. 63 Figure 18: Muscle restriction suppressed the SSP-induced new bouton induction in the NMJs from both control and muscular LanA knockdown groups. 65 Figure 19: Summary of the bouton type and their relative z-positioning to parental bouton in the new bouton populations induced under relaxed or restricted condition. 66 Figure 20: New boutons induced under restricted condition are smaller and positioned closer to their parent boutons, as well as containing higher levels of LanA-EGFP. 69 Figure 21: MMP inhibitor BB-94 suppressed the new bouton induction and activity-dependent down regulation of synaptic LanA. 71 Figure 22: MMP-1 knockdown suppressed the new bouton induction and activity-dependent LanA downregulation. 74 Figure 23: Expression of dystroglycan at Drosophila larval NMJ. 76 Figure 24: The peristaltic contraction and the NMJ morphology were not disrupted by Dg mutant. 77 Figure 25: Dg is required for new bouton induction and genetically interacts with LanA on new bouton induction. 79 Figure 26: Muscular Dg overexpression slightly enhances the new bouton induction by the SSP with three-pulses of spaced stimulations. 81 Figure 27: Synaptic LanA signals were significantly enhanced in the Dg mutant. 82 Figure 28: Activity-dependent downregulation of synaptic LanA is lost in the Dg mutant. 84 Figure 29: Muscular Dg overexpression increases synaptic LanA levels as well as the muscular LanA background levels. 86 Figure 30: Muscular Dg overexpression promotes activity-dependent downregulation of synaptic LanA. 88 Figure 31: Dg genetically interacts with mmp1 to regulate new bouton induction. 90 Figure 32: Dg is required for MMP1 localization at the synaptic region of the NMJs. 92 Figure 33: Muscular Dg promote MMP1 localization at synaptic boutons. 94 Figure 34: The activity-dependent downregulation of synaptic LanA was disrupted in trans-heterozygous mutant of Dg and mmp1. 96 Figure 35: Nitric oxide synthase (NOS) is dispensable for the acute new bouton induction at Drosophila larval NMJs. 97 REFERENCES 99

    Aberle, H., Haghighi, A. P., Fetter, R. D., McCabe, B. D., Magalhães, T. R., & Goodman, C. S. (2002). wishful thinking Encodes a BMP Type II Receptor that Regulates Synaptic Growth in Drosophila. Neuron Neuron, 33(4), 545-558.
    Ahmed, W. W., Li, T. C., Rubakhin, S. S., Chiba, A., Sweedler, J. V., & Saif, T. A. (2012). Mechanical Tension Modulates Local and Global Vesicle Dynamics in Neurons. Cellular and Molecular Bioengineering, 5(2), 155-164. doi:10.1007/s12195-012-0223-1
    Andonian, M. H., & Fahim, M. A. (1987). Effects of Endurance Exercise on the Morphology of Mouse Neuromuscular-Junctions during Aging. Journal of Neurocytology, 16(5), 589-599. doi:Doi 10.1007/Bf01637652
    Aponte-Santiago, N. A., Ormerod, K. G., Akbergenova, Y., & Littleton, J. T. (2020). Synaptic Plasticity Induced by Differential Manipulation of Tonic and Phasic Motoneurons in Drosophila. J Neurosci, 40(33), 6270-6288. doi:10.1523/JNEUROSCI.0925-20.2020
    Ataman, B., Ashley, J., Gorczyca, D., Gorczyca, M., Mathew, D., Wichmann, C., . . . Budnik, V. (2006). Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP. Proceedings of the National Academy of Sciences Proceedings of the National Academy of Sciences, 103(20), 7841-7846.
    Ataman, B., Ashley, J., Gorczyca, M., Ramachandran, P., Fouquet, W., Sigrist, S. J., & Budnik, V. (2008). Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron, 57(5), 705-718. doi:10.1016/j.neuron.2008.01.026
    Athamneh, A. I., & Suter, D. M. (2015). Quantifying mechanical force in axonal growth and guidance. Front Cell Neurosci, 9, 359. doi:10.3389/fncel.2015.00359
    Aumailley, M., Bruckner-Tuderman, L., Carter, W. G., Deutzmann, R., Edgar, D., Ekblom, P., . . . Yurchenco, P. D. (2005). A simplified laminin nomenclature. Matrix Biol, 24(5), 326-332. doi:10.1016/j.matbio.2005.05.006
    Berke, B., Wittnam, J., McNeill, E., Van Vactor, D. L., & Keshishian, H. (2013). Retrograde BMP signaling at the synapse: a permissive signal for synapse maturation and activity-dependent plasticity. J Neurosci, 33(45), 17937-17950. doi:10.1523/JNEUROSCI.6075-11.2013
    Bhat, H. F., Mir, S. S., Dar, K. B., Bhat, Z. F., Shah, R. A., & Ganai, N. A. (2018). ABC of multifaceted dystrophin glycoprotein complex (DGC). J Cell Physiol, 233(7), 5142-5159. doi:10.1002/jcp.25982
    Bogdanik, L., Framery, B., Frolich, A., Franco, B., Mornet, D., Bockaert, J., . . . Parmentier, M. L. (2008). Muscle dystroglycan organizes the postsynapse and regulates presynaptic neurotransmitter release at the Drosophila neuromuscular junction. PLoS One, 3(4), e2084. doi:10.1371/journal.pone.0002084
    Brusich, D. J., Spring, A. M., James, T. D., Yeates, C. J., Helms, T. H., & Frank, C. A. (2018). Drosophila CaV2 channels harboring human migraine mutations cause synapse hyperexcitability that can be suppressed by inhibition of a Ca2+ store release pathway. PLoS Genet, 14(8), e1007577. doi:10.1371/journal.pgen.1007577
    Budinger, G. R., Urich, D., DeBiase, P. J., Chiarella, S. E., Burgess, Z. O., Baker, C. M., . . . Jones, J. C. (2008). Stretch-induced activation of AMP kinase in the lung requires dystroglycan. Am J Respir Cell Mol Biol, 39(6), 666-672. doi:10.1165/rcmb.2007-0432OC
    Budnik, V., Zhong, Y., & Wu, C. F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. J Neurosci, 10(11), 3754-3768.
    Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological bulletin, 132(3), 354-380.
    Cerda-Kohler, H., Henríquez-Olguín, C., Casas, M., Jensen, T. E., Llanos, P., & Jaimovich, E. (2018). Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiol Rep Physiological Reports, 6(18), e13800.
    Christoforou, C. P., Greer, C. E., Challoner, B. R., Charizanos, D., & Ray, R. P. (2008). The detached locus encodes Drosophila Dystrophin, which acts with other components of the Dystrophin Associated Protein Complex to influence intercellular signalling in developing wing veins. Dev Biol, 313(2), 519-532. doi:10.1016/j.ydbio.2007.09.044
    Church, R. B., & Robertson, F. W. (1966). A biochemical study of the growth of <i>Drosophila melanogaster</i>. JEZ Journal of Experimental Zoology, 162(3), 337-351.
    Dahmann, C. (2010). Drosophila : methods and protocols. Totowa, NJ: Human Press.
    Dear, M. L., Shilts, J., & Broadie, K. (2017). Neuronal activity drives FMRP- and HSPG-dependent matrix metalloproteinase function required for rapid synaptogenesis. Sci Signal, 10(504). doi:10.1126/scisignal.aan3181
    Deng, W. M. (2003). Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila. Development, 130(1), 173-184. doi:10.1242/dev.00199
    Deschenes, M. R. (2019). Adaptations of the neuromuscular junction to exercise training. Current Opinion in Physiology, 10, 10-16. doi:10.1016/j.cophys.2019.02.004
    Deschenes, M. R., Judelson, D. A., Kraemer, W. J., Meskaitis, V. J., Volek, J. S., Nindl, B. C., . . . Deaver, D. R. (2000). Effects of resistance training on neuromuscular junction morphology. Muscle & Nerve, 23(10), 1576-1581. doi:Doi 10.1002/1097-4598(200010)23:10<1576::Aid-Mus15>3.0.Co;2-J
    Deschenes, M. R., Tenny, K. A., & Wilson, M. H. (2006). Increased and decreased activity elicits specific morphological adaptations of the neuromuscular junction. Neuroscience, 137(4), 1277-1283. doi:10.1016/j.neuroscience.2005.10.042
    Ehmsen, J., Poon, E., & Davies, K. (2002). The dystrophin-associated protein complex. J Cell Sci, 115(Pt 14), 2801-2803.
    Fahim, M. A. (1997). Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice. J Appl Physiol (1985), 83(1), 59-66. doi:10.1152/jappl.1997.83.1.59
    Franze, K. (2013). The mechanical control of nervous system development. Development, 140(15), 3069-3077. doi:10.1242/dev.079145
    Fuentes-Medel, Y., Logan, M. A., Ashley, J., Ataman, B., Budnik, V., & Freeman, M. R. (2009). Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol, 7(8), e1000184. doi:10.1371/journal.pbio.1000184
    Garbincius, J. F., & Michele, D. E. (2015). Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling. Proc Natl Acad Sci U S A, 112(44), 13663-13668. doi:10.1073/pnas.1512991112
    Gorczyca, M., Augart, C., & Budnik, V. (1993). Insulin-like Receptor and Insulin-like Peptide Are Localized at Neuromuscular Junctions in Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience, 13(9), 3692-3704.
    Guangming, G., Junhua, G., Chenchen, Z., Yang, M., & Wei, X. (2020). Neurexin and Neuroligins Maintain the Balance of Ghost and Satellite Boutons at the Drosophila Neuromuscular Junction. Front Neuroanat, 14, 19. doi:10.3389/fnana.2020.00019
    Gumerson, J. D., & Michele, D. E. (2011). The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol, 2011, 210797. doi:10.1155/2011/210797
    Heckmann, M., & Dudel, J. (1997). Desensitization and resensitization kinetics of glutamate receptor channels from Drosophila larval muscle. Biophys J, 72(5), 2160-2169. doi:10.1016/S0006-3495(97)78859-3
    Heissler, S. M., Chinthalapudi, K., & Sellers, J. R. (2015). Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster. FASEB J, 29(4), 1456-1466. doi:10.1096/fj.14-266742
    Henchcliffe, C., Garcia-Alonso, L., Tang, J., & Goodman, C. S. (1993). Genetic analysis of laminin A reveals diverse functions during morphogenesis in Drosophila. Development, 118(2), 325-337.
    Hohenester, E., & Yurchenco, P. D. (2013). Laminins in basement membrane assembly. Cell Adh Migr, 7(1), 56-63. doi:10.4161/cam.21831
    Hopkins, P. M. (2006). Skeletal muscle physiology. Continuing Education in Anaesthesia Critical Care & Pain, 6(1), 1-6. doi:10.1093/bjaceaccp/mki062
    Hornberger, T. A., & Chien, S. (2006). Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem, 97(6), 1207-1216. doi:10.1002/jcb.20671
    Huntley, G. W. (2012). Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci, 13(11), 743-757. doi:10.1038/nrn3320
    Ito, N., Ruegg, U. T., Kudo, A., Miyagoe-Suzuki, Y., & Takeda, S. (2013). Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med, 19(1), 101-106. doi:10.1038/nm.3019
    Jan, L. Y., & Jan, Y. N. (1982). Antibodies to Horseradish-Peroxidase as Specific Neuronal Markers in Drosophila and in Grasshopper Embryos. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 79(8), 2700-2704. doi:DOI 10.1073/pnas.79.8.2700
    Jasmin, B. J., & Gisiger, V. (1990). Regulation by exercise of the pool of G4 acetylcholinesterase characterizing fast muscles: opposite effect of running training in antagonist muscles. The Journal of Neuroscience, 10(5), 1444-1454.
    Jennings, B. H. (2011). Drosophila – a versatile model in biology & medicine. Materials Today, 14(5), 190-195. doi:10.1016/s1369-7021(11)70113-4
    Jiang, F. X., Yurke, B., Firestein, B. L., & Langrana, N. A. (2008). Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann Biomed Eng, 36(9), 1565-1579. doi:10.1007/s10439-008-9530-z
    Johansen, J., Halpern, M. E., Johansen, K. M., & Keshishian, H. (1989). Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. J Neurosci, 9(2), 710-725.
    Kelley, G. (1996). Mechanical overload and skeletal muscle fiber hyperplasia: a meta-analysis. Journal of Applied Physiology Journal of Applied Physiology, 81(4), 1584-1588.
    Kepiro, M., Varkuti, B. H., Vegner, L., Voros, G., Hegyi, G., Varga, M., & Malnasi-Csizmadia, A. (2014). para-Nitroblebbistatin, the non-cytotoxic and photostable myosin II inhibitor. Angew Chem Int Ed Engl, 53(31), 8211-8215. doi:10.1002/anie.201403540
    Koon, A. C., Ashley, J., Barria, R., DasGupta, S., Brain, R., Waddell, S., . . . Budnik, V. (2011). Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nat Neurosci, 14(2), 190-199. doi:10.1038/nn.2716
    Korkut, C., Li, Y., Koles, K., Brewer, C., Ashley, J., Yoshihara, M., & Budnik, V. (2013). Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron, 77(6), 1039-1046. doi:10.1016/j.neuron.2013.01.013
    Kramar, E. A., Babayan, A. H., Gavin, C. F., Cox, C. D., Jafari, M., Gall, C. M., . . . Lynch, G. (2012). Synaptic evidence for the efficacy of spaced learning. Proc Natl Acad Sci U S A, 109(13), 5121-5126. doi:10.1073/pnas.1120700109
    Kucherenko, M. M., Marrone, A. K., Rishko, V. M., Magliarelli Hde, F., & Shcherbata, H. R. (2011). Stress and muscular dystrophy: a genetic screen for dystroglycan and dystrophin interactors in Drosophila identifies cellular stress response components. Dev Biol, 352(2), 228-242. doi:10.1016/j.ydbio.2011.01.013
    Lacin, H., Rusch, J., Yeh, R. T., Fujioka, M., Wilson, B. A., Zhu, Y., . . . Skeath, J. B. (2014). Genome-wide identification of Drosophila Hb9 targets reveals a pivotal role in directing the transcriptome within eight neuronal lineages, including activation of nitric oxide synthase and Fd59a/Fox-D. Dev Biol, 388(1), 117-133. doi:10.1016/j.ydbio.2014.01.029
    Leiton, C. V., Aranmolate, A., Eyermann, C., Menezes, M. J., Escobar-Hoyos, L. F., Husain, S., . . . Colognato, H. (2015). Laminin promotes metalloproteinase-mediated dystroglycan processing to regulate oligodendrocyte progenitor cell proliferation. J Neurochem, 135(3), 522-538. doi:10.1111/jnc.13241
    Limouze, J., Straight, A. F., Mitchison, T., & Sellers, J. R. (2004). Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil, 25(4-5), 337-341. doi:10.1007/s10974-004-6060-7
    Llano, E., Adam, G., Pendas, A. M., Quesada, V., Sanchez, L. M., Santamaria, I., . . . Lopez-Otin, C. (2002). Structural and enzymatic characterization of Drosophila Dm2-MMP, a membrane-bound matrix metalloproteinase with tissue-specific expression. J Biol Chem, 277(26), 23321-23329. doi:10.1074/jbc.M200121200
    Llano, E., Pendas, A. M., Aza-Blanc, P., Kornberg, T. B., & Lopez-Otin, C. (2000). Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem, 275(46), 35978-35985. doi:10.1074/jbc.M006045200
    Lnenicka, G. A., & Keshishian, H. (2000). Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. J. Neurobiol. Journal of Neurobiology, 43(2).
    McGuire, S. E., Mao, Z., & Davis, R. L. (2004). Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE, 2004(220), pl6. doi:10.1126/stke.2202004pl6
    Menon, K. P., Carrillo, R. A., & Zinn, K. (2013). Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol, 2(5), 647-670. doi:10.1002/wdev.108
    Michaluk, P., Kolodziej, L., Mioduszewska, B., Wilczynski, G. M., Dzwonek, J., Jaworski, J., . . . Kaczmarek, L. (2007). Beta-dystroglycan as a target for MMP-9, in response to enhanced neuronal activity. J Biol Chem, 282(22), 16036-16041. doi:10.1074/jbc.M700641200
    Miech, C., Pauer, H. U., He, X., & Schwarz, T. L. (2008). Presynaptic local signaling by a canonical wingless pathway regulates development of the Drosophila neuromuscular junction. J Neurosci, 28(43), 10875-10884. doi:10.1523/JNEUROSCI.0164-08.2008
    Monastirioti, M., Gorczyca, M., Rapus, J., Eckert, M., White, K., & Budnik, V. (1995). Octopamine Immunoreactivity in the Fruit Fly Drosophila melanogaster. The Journal of comparative neurology, 356(2), 275-287.
    Nagy, V., Bozdagi, O., Matynia, A., Balcerzyk, M., Okulski, P., Dzwonek, J., . . . Huntley, G. W. (2006). Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. Journal of Neuroscience, 26(7), 1923-1934. doi:10.1523/Jneurosci.4359-05.2006
    Neves, R. V. P., Rosa, T. S., Souza, M. K., Oliveira, A. J. C., Gomes, G. N. S., Brixi, B., . . . Moraes, M. R. (2019). Dynamic, Not Isometric Resistance Training Improves Muscle Inflammation, Oxidative Stress and Hypertrophy in Rats. Front Physiol, 10, 4. doi:10.3389/fphys.2019.00004
    Nishimura, A., Sugita, M., Kato, K., Fukuda, A., Sudo, A., & Uchida, A. (2010). Hypoxia Increases Muscle Hypertrophy Induced by Resistance Training. International Journal of Sports Physiology and Performance, 5(4), 497-508.
    O'Sullivan, S., Medina, C., Ledwidge, M., Radomski, M. W., & Gilmer, J. F. (2014). Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance--NO and MMP-9 interactions. Biochim Biophys Acta, 1843(3), 603-617. doi:10.1016/j.bbamcr.2013.12.006
    Packard, M., Jokhi, V., Ding, B., Ruiz-Canada, C., Ashley, J., & Budnik, V. (2015). Nucleus to Synapse Nesprin1 Railroad Tracks Direct Synapse Maturation through RNA Localization. Neuron, 86(4), 1015-1028. doi:10.1016/j.neuron.2015.04.006
    Packard, M., Koo, E. S., Gorczyca, M., Sharpe, J., Cumberledge, S., & Budnik, V. (2002). The Drosophila Wnt, Wingless, Provides an Essential Signal for Pre- and Postsynaptic Differentiation. CELL</cja:jid> Cell, 111(3), 319-330.
    Page-McCaw, A., Serano, J., Sante, J. M., & Rubin, G. M. (2003). Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell, 4(1), 95-106.
    Peter, A. K., Cheng, H., Ross, R. S., Knowlton, K. U., & Chen, J. (2011). The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog Pediatr Cardiol, 31(2), 83-88. doi:10.1016/j.ppedcard.2011.02.003
    Pfister, B. J., Iwata, A., Meaney, D. F., & Smith, D. H. (2004). Extreme stretch growth of integrated axons. J Neurosci, 24(36), 7978-7983. doi:10.1523/JNEUROSCI.1974-04.2004
    Piccioli, Z. D., & Littleton, J. T. (2014). Retrograde BMP signaling modulates rapid activity-dependent synaptic growth via presynaptic LIM kinase regulation of cofilin. J Neurosci, 34(12), 4371-4381. doi:10.1523/JNEUROSCI.4943-13.2014
    Powers, S. K., Ji, L. L., Kavazis, A. N., & Jackson, M. J. (2011). REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE. Comprehensive Physiology, 1(2), 941-969.
    Rogers, R. S., & Nishimune, H. (2017). The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol, 57-58, 86-105. doi:10.1016/j.matbio.2016.08.008
    Roman, B. I., Verhasselt, S., & Stevens, C. V. (2018). Medicinal Chemistry and Use of Myosin II Inhibitor ( S)-Blebbistatin and Its Derivatives. J Med Chem, 61(21), 9410-9428. doi:10.1021/acs.jmedchem.8b00503
    San Martin, A., Rela, L., Gelb, B., & Pagani, M. R. (2017). The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes. J Neurosci, 37(19), 4992-5007. doi:10.1523/JNEUROSCI.2607-16.2017
    Sanes, J. R. (2003). The basement membrane/basal lamina of skeletal muscle. J Biol Chem, 278(15), 12601-12604. doi:10.1074/jbc.R200027200
    Schneider, M., Khalil, A. A., Poulton, J., Castillejo-Lopez, C., Egger-Adam, D., Wodarz, A., . . . Baumgartner, S. (2006). Perlecan and Dystroglycan act at the basal side of the Drosophila follicular epithelium to maintain epithelial organization. Development, 133(19), 3805-3815. doi:10.1242/dev.02549
    Schoenfeld, B. J. (2010). The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. Journal of Strength and Conditioning Research, 24(10), 2857-2872. doi:10.1519/JSC.0b013e3181e840f3
    Schuster, C. M., Davis, G. W., Fetter, R. D., & Goodman, C. S. (1996). Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron, 17(4), 641-654.
    Shakiryanova, D., Klose, M. K., Zhou, Y., Gu, T., Deitcher, D. L., Atwood, H. L., . . . Levitan, E. S. (2007). Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release. J Neurosci, 27(29), 7799-7806. doi:10.1523/JNEUROSCI.1879-07.2007
    Shaver, S. A., Riedl, C. A., Parkes, T. L., Sokolowski, M. B., & Hilliker, A. J. (2000). Isolation of larval behavioral mutants in Drosophila melanogaster. Journal of Neurogenetics, 14(4), 193-205.
    Sigrist, S. J., Reiff, D. F., Thiel, P. R., Steinert, J. R., & Schuster, C. M. (2003). Experience-dependent strengthening of Drosophila neuromuscular junctions. J Neurosci, 23(16), 6546-6556.
    Stasiv, Y., Regulski, M., Kuzin, B., Tully, T., & Enikolopov, G. (2001). The Drosophila nitric-oxide synthase gene (dNOS) encodes a family of proteins that can modulate NOS activity by acting as dominant negative regulators. J Biol Chem, 276(45), 42241-42251. doi:10.1074/jbc.M105066200
    Straight, A. F., Cheung, A., Limouze, J., Chen, I., Westwood, N. J., Sellers, J. R., & Mitchison, T. J. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science, 299(5613), 1743-1747. doi:10.1126/science.1081412
    Sullivan, K. M. C., Scott, K., Zuker, C. S., & Rubin, G. M. (2000). The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 5942-5947. doi:DOI 10.1073/pnas.110145997
    Terena, S. M., Fernandes, K. P., Bussadori, S. K., Deana, A. M., & Mesquita-Ferrari, R. A. (2017). Systematic review of the synergist muscle ablation model for compensatory hypertrophy. Rev Assoc Med Bras (1992), 63(2), 164-172. doi:10.1590/1806-9282.63.02.164
    Tsai, P. I., Kao, H. H., Grabbe, C., Lee, Y. T., Ghose, A., Lai, T. T., . . . Chien, C. T. (2008). Fak56 functions downstream of integrin alphaPS3betanu and suppresses MAPK activation in neuromuscular junction growth. Neural Dev, 3, 26. doi:10.1186/1749-8104-3-26
    Tsai, P. I., Wang, M., Kao, H. H., Cheng, Y. J., Lin, Y. J., Chen, R. H., & Chien, C. T. (2012). Activity-dependent retrograde laminin A signaling regulates synapse growth at Drosophila neuromuscular junctions. Proc Natl Acad Sci U S A, 109(43), 17699-17704. doi:10.1073/pnas.1206416109
    Urbano, J. M., Torgler, C. N., Molnar, C., Tepass, U., Lopez-Varea, A., Brown, N. H., . . . Martin-Bermudo, M. D. (2009). Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis. Development, 136(24), 4165-4176. doi:10.1242/dev.044263
    Varkuti, B. H., Kepiro, M., Horvath, I. A., Vegner, L., Rati, S., Zsigmond, A., . . . Malnasi-Csizmadia, A. (2016). A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci Rep, 6, 26141. doi:10.1038/srep26141
    Vasin, A., Sabeva, N., Torres, C., Phan, S., Bushong, E. A., Ellisman, M. H., & Bykhovskaia, M. (2019). Two Pathways for the Activity-Dependent Growth and Differentiation of Synaptic Boutons in Drosophila. eNeuro, 6(4). doi:10.1523/ENEURO.0060-19.2019
    Vasin, A., Zueva, L., Torrez, C., Volfson, D., Littleton, J. T., & Bykhovskaia, M. (2014). Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. J Neurosci, 34(32), 10554-10563. doi:10.1523/JNEUROSCI.5074-13.2014
    Vlach, H. A., & Sandhofer, C. M. (2012). Distributing Learning Over Time: The Spacing Effect in Children's Acquisition and Generalization of Science Concepts. childdevelopment Child Development, 83(4), 1137-1144.
    Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M., & Hulmi, J. J. (2019). Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985), 126(1), 30-43. doi:10.1152/japplphysiol.00685.2018
    Waerhaug, O., Dahl, H. A., & Kardel, K. (1992). Different Effects of Physical-Training on the Morphology of Motor-Nerve Terminals in the Rat Extensor Digitorum Longus and Soleus Muscles. Anatomy and Embryology, 186(2), 125-128.
    Wairkar, Y. P., Fradkin, L. G., Noordermeer, J. N., & DiAntonio, A. (2008). Synaptic defects in a Drosophila model of congenital muscular dystrophy. J Neurosci, 28(14), 3781-3789. doi:10.1523/JNEUROSCI.0478-08.2008
    Wan, H. I., DiAntonio, A., Fetter, R. D., Bergstrom, K., Strauss, R., & Goodman, C. S. (2000). Highwire regulates synaptic growth in Drosophila. Neuron, 26(2), 313-329.
    Wlodarczyk, J., Mukhina, I., Kaczmarek, L., & Dityatev, A. (2011). Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev Neurobiol, 71(11), 1040-1053. doi:10.1002/dneu.20958
    Yakubovich, N., Silva, E. A., & O'Farrell, P. H. (2010). Nitric oxide synthase is not essential for Drosophila development. Current Biology Current Biology, 20(4), R141-R142.
    Yamada, M., Sankoda, Y., Tatsumi, R., Mizunoya, W., Ikeuchi, Y., Sunagawa, K., & Allen, R. E. (2008). Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int J Biochem Cell Biol, 40(10), 2183-2191. doi:10.1016/j.biocel.2008.02.017
    Zhang, S., Dailey, G. M., Kwan, E., Glasheen, B. M., Sroga, G. E., & Page-McCaw, A. (2006). An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion. Genes Dev, 20(14), 1899-1910. doi:10.1101/gad.1426906

    下載圖示 校內:2022-01-14公開
    校外:2022-01-14公開
    QR CODE