| 研究生: |
葉俊言 Yeh, Chun-Yen |
|---|---|
| 論文名稱: |
果蠅幼蟲肌肉收縮通過Dystroglycan與Laminin調控神經肌肉接頭的活動依賴性突觸生長 Muscle contraction acutely modulates the activity-dependent bouton formation of Drosophila larval neuromuscular junction through the Dystroglycan-Laminin axis |
| 指導教授: |
簡正鼎
Chien, Cheng-Ting |
| 共同指導教授: |
姜學誠
Chiang, Hsueh-Cheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 跨領域神經科學國際博士學位學程 TIGP on The Interdisciplinary Neuroscience |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 神經可塑性 、神經肌肉接點 、層粘連蛋白 、 肌糖蛋白聚醣 |
| 外文關鍵詞: | Laminin, Dystroglycan, Neuromuscular junction, Synaptic plasticity, matrix metalloproteinase |
| 相關次數: | 點閱:59 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肌肉通過肥大及其代謝變化來適應運動訓練。神經肌肉接頭 (NMJ)是運動神經元用來控制肌肉的收縮的軸突末端結構,許多研究顯示運動訓練亦可以造成NMJ的結構變化來適應運動訓練。然而,與運動造成的肌肉肥大不同,對於運動訓練如何改變NMJ的結構我們在分子機制上仍所知之甚少。果蠅幼蟲的爬行活動已被證實能造成其NMJ的結構改變,且急性刺激果蠅幼蟲的NMJ會觸發NMJ的結構新生,藉由量化急性刺激下NMJ觸發的新生結構,這篇論文試著使用果蠅幼蟲的神經肌肉系統為模型來研究NMJ的活動依賴性結構重塑。通過急性刺激NMJ活性並同時限制肌肉的收縮,我們發現肌肉的物理性運動收縮在NMJ的活動依賴性結構重塑上扮演協助的功能。過去已知層粘連蛋白A (LanA)能通過逆行信號(Retrograde signaling)的方式抑制果蠅幼蟲NMJ的生長,而位於NMJ上層粘連蛋白A的數量則會受到幼蟲長期爬行活動的調節。在這裡,我進一步確認層粘連蛋白A能抑制NMJ的活動依賴性結構重塑,並且發現對NMJ的急性刺激能快速降低層粘連蛋白A在NMJ的濃度。此外,若肌肉的物理性收縮被抑制則粘連蛋白A在NMJ的濃度將不再受NMJ的活性影響,這說明肌肉的物理性運動收縮可能直接影響粘連蛋白A在NMJ的濃度調控,並因而影響NMJ的活動依賴性結構重塑。分子機制上,層粘連蛋白A在NMJ的濃度調控需要基質金屬蛋白酶(Matrix metalloproteinase, MMP)的參與。且抑制MMP的活性或表現亦會干擾果蠅NMJ的活動依賴性結構重塑。肌營養不良蛋白聚糖(Dystroglycan)是一個富含於肌肉細胞膜上的層粘連蛋白受體,過去研究發現,dystroglycan及相關蛋白負責將肌肉收縮過程中產生的張力分配至胞外基質網路中。這邊證明了dystroglycan也參與了果蠅NMJ的活動依賴性結構重塑,且層粘連蛋白A的活動依賴性濃度調控亦需要dystroglycan。最後我們發現dystroglycan能影響MMP在NMJ的表現量,且dystroglycan和MMP之間協同參與NMJ的活動依賴性結構重塑與層粘連蛋白A的活動依賴性濃度調控。基於這些發現,本研究認為肌肉的物理性收縮可能經過dystroglycan來影響MMP於NMJ的活性與表現來調節層粘連蛋白A的濃度,並因此影響果蠅NMJ的活動依賴性結構重塑。
Muscle adapts to exercise training through hypertrophy and changes to its metabolism. Exercise training remodels neuromuscular junctions (NMJs), through which motor neurons control muscle contraction. However, unlike muscle, how exercise contributes to the remodeling of NMJs remains poorly understood. Drosophila larval NMJs are capable of rapidly NMJ remodeling through formation of new boutons in response to acute spaced stimulation, providing a suitable platform to dissect the requirements and mechanisms of exercise-dependent NMJ remodeling. By utilizing physical and chemical ways to restrict the muscular contraction without affecting presynaptic stimulation, I show that the dynamic contraction of muscle is an important factor for activity-dependent new botuon formation at NMJs. Retrograde signaling of Laminin-A (LanA) suppresses the growth of larval NMJs, while the levels of LanA at NMJs were regulated by the long-term crawling activities of larvae. Here I confirm that LanA also suppresses the acute activity-dependent new bouton formation, and further demonstrate that the synaptic LanA levels can be rapidly downregulated by acute spaced stimulations. Moreover, the downregulation of LanA requires dynamic contraction of muscle, suggesting that LanA regulation is one of the mechanisms for dynamic muscular contraction to remodel NMJs. The activity-dependent downregulation of synaptic LanA requires matrix metalloproteinase (MMP) activity, which is also directly involved in new bouton induction. Dystroglycan (Dg), the Laminin receptor of the Dystrophin-glycoprotein complex, promotes activity-dependent new bouton formation through LanA regulation. Dg also genetically interact with MMP-1 to regulate new bouton induction, and Dg control the protein levels of MMP-1 at larval NMJs. Thus, I propose that dynamic muscle contraction promotes activity-dependent NMJ remodeling through LanA downregulation, which is mediated through Dg and MMP-1 at Drosophila larval NMJs.
Aberle, H., Haghighi, A. P., Fetter, R. D., McCabe, B. D., Magalhães, T. R., & Goodman, C. S. (2002). wishful thinking Encodes a BMP Type II Receptor that Regulates Synaptic Growth in Drosophila. Neuron Neuron, 33(4), 545-558.
Ahmed, W. W., Li, T. C., Rubakhin, S. S., Chiba, A., Sweedler, J. V., & Saif, T. A. (2012). Mechanical Tension Modulates Local and Global Vesicle Dynamics in Neurons. Cellular and Molecular Bioengineering, 5(2), 155-164. doi:10.1007/s12195-012-0223-1
Andonian, M. H., & Fahim, M. A. (1987). Effects of Endurance Exercise on the Morphology of Mouse Neuromuscular-Junctions during Aging. Journal of Neurocytology, 16(5), 589-599. doi:Doi 10.1007/Bf01637652
Aponte-Santiago, N. A., Ormerod, K. G., Akbergenova, Y., & Littleton, J. T. (2020). Synaptic Plasticity Induced by Differential Manipulation of Tonic and Phasic Motoneurons in Drosophila. J Neurosci, 40(33), 6270-6288. doi:10.1523/JNEUROSCI.0925-20.2020
Ataman, B., Ashley, J., Gorczyca, D., Gorczyca, M., Mathew, D., Wichmann, C., . . . Budnik, V. (2006). Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP. Proceedings of the National Academy of Sciences Proceedings of the National Academy of Sciences, 103(20), 7841-7846.
Ataman, B., Ashley, J., Gorczyca, M., Ramachandran, P., Fouquet, W., Sigrist, S. J., & Budnik, V. (2008). Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron, 57(5), 705-718. doi:10.1016/j.neuron.2008.01.026
Athamneh, A. I., & Suter, D. M. (2015). Quantifying mechanical force in axonal growth and guidance. Front Cell Neurosci, 9, 359. doi:10.3389/fncel.2015.00359
Aumailley, M., Bruckner-Tuderman, L., Carter, W. G., Deutzmann, R., Edgar, D., Ekblom, P., . . . Yurchenco, P. D. (2005). A simplified laminin nomenclature. Matrix Biol, 24(5), 326-332. doi:10.1016/j.matbio.2005.05.006
Berke, B., Wittnam, J., McNeill, E., Van Vactor, D. L., & Keshishian, H. (2013). Retrograde BMP signaling at the synapse: a permissive signal for synapse maturation and activity-dependent plasticity. J Neurosci, 33(45), 17937-17950. doi:10.1523/JNEUROSCI.6075-11.2013
Bhat, H. F., Mir, S. S., Dar, K. B., Bhat, Z. F., Shah, R. A., & Ganai, N. A. (2018). ABC of multifaceted dystrophin glycoprotein complex (DGC). J Cell Physiol, 233(7), 5142-5159. doi:10.1002/jcp.25982
Bogdanik, L., Framery, B., Frolich, A., Franco, B., Mornet, D., Bockaert, J., . . . Parmentier, M. L. (2008). Muscle dystroglycan organizes the postsynapse and regulates presynaptic neurotransmitter release at the Drosophila neuromuscular junction. PLoS One, 3(4), e2084. doi:10.1371/journal.pone.0002084
Brusich, D. J., Spring, A. M., James, T. D., Yeates, C. J., Helms, T. H., & Frank, C. A. (2018). Drosophila CaV2 channels harboring human migraine mutations cause synapse hyperexcitability that can be suppressed by inhibition of a Ca2+ store release pathway. PLoS Genet, 14(8), e1007577. doi:10.1371/journal.pgen.1007577
Budinger, G. R., Urich, D., DeBiase, P. J., Chiarella, S. E., Burgess, Z. O., Baker, C. M., . . . Jones, J. C. (2008). Stretch-induced activation of AMP kinase in the lung requires dystroglycan. Am J Respir Cell Mol Biol, 39(6), 666-672. doi:10.1165/rcmb.2007-0432OC
Budnik, V., Zhong, Y., & Wu, C. F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. J Neurosci, 10(11), 3754-3768.
Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological bulletin, 132(3), 354-380.
Cerda-Kohler, H., Henríquez-Olguín, C., Casas, M., Jensen, T. E., Llanos, P., & Jaimovich, E. (2018). Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiol Rep Physiological Reports, 6(18), e13800.
Christoforou, C. P., Greer, C. E., Challoner, B. R., Charizanos, D., & Ray, R. P. (2008). The detached locus encodes Drosophila Dystrophin, which acts with other components of the Dystrophin Associated Protein Complex to influence intercellular signalling in developing wing veins. Dev Biol, 313(2), 519-532. doi:10.1016/j.ydbio.2007.09.044
Church, R. B., & Robertson, F. W. (1966). A biochemical study of the growth of <i>Drosophila melanogaster</i>. JEZ Journal of Experimental Zoology, 162(3), 337-351.
Dahmann, C. (2010). Drosophila : methods and protocols. Totowa, NJ: Human Press.
Dear, M. L., Shilts, J., & Broadie, K. (2017). Neuronal activity drives FMRP- and HSPG-dependent matrix metalloproteinase function required for rapid synaptogenesis. Sci Signal, 10(504). doi:10.1126/scisignal.aan3181
Deng, W. M. (2003). Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila. Development, 130(1), 173-184. doi:10.1242/dev.00199
Deschenes, M. R. (2019). Adaptations of the neuromuscular junction to exercise training. Current Opinion in Physiology, 10, 10-16. doi:10.1016/j.cophys.2019.02.004
Deschenes, M. R., Judelson, D. A., Kraemer, W. J., Meskaitis, V. J., Volek, J. S., Nindl, B. C., . . . Deaver, D. R. (2000). Effects of resistance training on neuromuscular junction morphology. Muscle & Nerve, 23(10), 1576-1581. doi:Doi 10.1002/1097-4598(200010)23:10<1576::Aid-Mus15>3.0.Co;2-J
Deschenes, M. R., Tenny, K. A., & Wilson, M. H. (2006). Increased and decreased activity elicits specific morphological adaptations of the neuromuscular junction. Neuroscience, 137(4), 1277-1283. doi:10.1016/j.neuroscience.2005.10.042
Ehmsen, J., Poon, E., & Davies, K. (2002). The dystrophin-associated protein complex. J Cell Sci, 115(Pt 14), 2801-2803.
Fahim, M. A. (1997). Endurance exercise modulates neuromuscular junction of C57BL/6NNia aging mice. J Appl Physiol (1985), 83(1), 59-66. doi:10.1152/jappl.1997.83.1.59
Franze, K. (2013). The mechanical control of nervous system development. Development, 140(15), 3069-3077. doi:10.1242/dev.079145
Fuentes-Medel, Y., Logan, M. A., Ashley, J., Ataman, B., Budnik, V., & Freeman, M. R. (2009). Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol, 7(8), e1000184. doi:10.1371/journal.pbio.1000184
Garbincius, J. F., & Michele, D. E. (2015). Dystrophin-glycoprotein complex regulates muscle nitric oxide production through mechanoregulation of AMPK signaling. Proc Natl Acad Sci U S A, 112(44), 13663-13668. doi:10.1073/pnas.1512991112
Gorczyca, M., Augart, C., & Budnik, V. (1993). Insulin-like Receptor and Insulin-like Peptide Are Localized at Neuromuscular Junctions in Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience, 13(9), 3692-3704.
Guangming, G., Junhua, G., Chenchen, Z., Yang, M., & Wei, X. (2020). Neurexin and Neuroligins Maintain the Balance of Ghost and Satellite Boutons at the Drosophila Neuromuscular Junction. Front Neuroanat, 14, 19. doi:10.3389/fnana.2020.00019
Gumerson, J. D., & Michele, D. E. (2011). The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol, 2011, 210797. doi:10.1155/2011/210797
Heckmann, M., & Dudel, J. (1997). Desensitization and resensitization kinetics of glutamate receptor channels from Drosophila larval muscle. Biophys J, 72(5), 2160-2169. doi:10.1016/S0006-3495(97)78859-3
Heissler, S. M., Chinthalapudi, K., & Sellers, J. R. (2015). Kinetic characterization of the sole nonmuscle myosin-2 from the model organism Drosophila melanogaster. FASEB J, 29(4), 1456-1466. doi:10.1096/fj.14-266742
Henchcliffe, C., Garcia-Alonso, L., Tang, J., & Goodman, C. S. (1993). Genetic analysis of laminin A reveals diverse functions during morphogenesis in Drosophila. Development, 118(2), 325-337.
Hohenester, E., & Yurchenco, P. D. (2013). Laminins in basement membrane assembly. Cell Adh Migr, 7(1), 56-63. doi:10.4161/cam.21831
Hopkins, P. M. (2006). Skeletal muscle physiology. Continuing Education in Anaesthesia Critical Care & Pain, 6(1), 1-6. doi:10.1093/bjaceaccp/mki062
Hornberger, T. A., & Chien, S. (2006). Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem, 97(6), 1207-1216. doi:10.1002/jcb.20671
Huntley, G. W. (2012). Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci, 13(11), 743-757. doi:10.1038/nrn3320
Ito, N., Ruegg, U. T., Kudo, A., Miyagoe-Suzuki, Y., & Takeda, S. (2013). Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat Med, 19(1), 101-106. doi:10.1038/nm.3019
Jan, L. Y., & Jan, Y. N. (1982). Antibodies to Horseradish-Peroxidase as Specific Neuronal Markers in Drosophila and in Grasshopper Embryos. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences, 79(8), 2700-2704. doi:DOI 10.1073/pnas.79.8.2700
Jasmin, B. J., & Gisiger, V. (1990). Regulation by exercise of the pool of G4 acetylcholinesterase characterizing fast muscles: opposite effect of running training in antagonist muscles. The Journal of Neuroscience, 10(5), 1444-1454.
Jennings, B. H. (2011). Drosophila – a versatile model in biology & medicine. Materials Today, 14(5), 190-195. doi:10.1016/s1369-7021(11)70113-4
Jiang, F. X., Yurke, B., Firestein, B. L., & Langrana, N. A. (2008). Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann Biomed Eng, 36(9), 1565-1579. doi:10.1007/s10439-008-9530-z
Johansen, J., Halpern, M. E., Johansen, K. M., & Keshishian, H. (1989). Stereotypic morphology of glutamatergic synapses on identified muscle cells of Drosophila larvae. J Neurosci, 9(2), 710-725.
Kelley, G. (1996). Mechanical overload and skeletal muscle fiber hyperplasia: a meta-analysis. Journal of Applied Physiology Journal of Applied Physiology, 81(4), 1584-1588.
Kepiro, M., Varkuti, B. H., Vegner, L., Voros, G., Hegyi, G., Varga, M., & Malnasi-Csizmadia, A. (2014). para-Nitroblebbistatin, the non-cytotoxic and photostable myosin II inhibitor. Angew Chem Int Ed Engl, 53(31), 8211-8215. doi:10.1002/anie.201403540
Koon, A. C., Ashley, J., Barria, R., DasGupta, S., Brain, R., Waddell, S., . . . Budnik, V. (2011). Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nat Neurosci, 14(2), 190-199. doi:10.1038/nn.2716
Korkut, C., Li, Y., Koles, K., Brewer, C., Ashley, J., Yoshihara, M., & Budnik, V. (2013). Regulation of postsynaptic retrograde signaling by presynaptic exosome release. Neuron, 77(6), 1039-1046. doi:10.1016/j.neuron.2013.01.013
Kramar, E. A., Babayan, A. H., Gavin, C. F., Cox, C. D., Jafari, M., Gall, C. M., . . . Lynch, G. (2012). Synaptic evidence for the efficacy of spaced learning. Proc Natl Acad Sci U S A, 109(13), 5121-5126. doi:10.1073/pnas.1120700109
Kucherenko, M. M., Marrone, A. K., Rishko, V. M., Magliarelli Hde, F., & Shcherbata, H. R. (2011). Stress and muscular dystrophy: a genetic screen for dystroglycan and dystrophin interactors in Drosophila identifies cellular stress response components. Dev Biol, 352(2), 228-242. doi:10.1016/j.ydbio.2011.01.013
Lacin, H., Rusch, J., Yeh, R. T., Fujioka, M., Wilson, B. A., Zhu, Y., . . . Skeath, J. B. (2014). Genome-wide identification of Drosophila Hb9 targets reveals a pivotal role in directing the transcriptome within eight neuronal lineages, including activation of nitric oxide synthase and Fd59a/Fox-D. Dev Biol, 388(1), 117-133. doi:10.1016/j.ydbio.2014.01.029
Leiton, C. V., Aranmolate, A., Eyermann, C., Menezes, M. J., Escobar-Hoyos, L. F., Husain, S., . . . Colognato, H. (2015). Laminin promotes metalloproteinase-mediated dystroglycan processing to regulate oligodendrocyte progenitor cell proliferation. J Neurochem, 135(3), 522-538. doi:10.1111/jnc.13241
Limouze, J., Straight, A. F., Mitchison, T., & Sellers, J. R. (2004). Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil, 25(4-5), 337-341. doi:10.1007/s10974-004-6060-7
Llano, E., Adam, G., Pendas, A. M., Quesada, V., Sanchez, L. M., Santamaria, I., . . . Lopez-Otin, C. (2002). Structural and enzymatic characterization of Drosophila Dm2-MMP, a membrane-bound matrix metalloproteinase with tissue-specific expression. J Biol Chem, 277(26), 23321-23329. doi:10.1074/jbc.M200121200
Llano, E., Pendas, A. M., Aza-Blanc, P., Kornberg, T. B., & Lopez-Otin, C. (2000). Dm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem, 275(46), 35978-35985. doi:10.1074/jbc.M006045200
Lnenicka, G. A., & Keshishian, H. (2000). Identified motor terminals in Drosophila larvae show distinct differences in morphology and physiology. J. Neurobiol. Journal of Neurobiology, 43(2).
McGuire, S. E., Mao, Z., & Davis, R. L. (2004). Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci STKE, 2004(220), pl6. doi:10.1126/stke.2202004pl6
Menon, K. P., Carrillo, R. A., & Zinn, K. (2013). Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol, 2(5), 647-670. doi:10.1002/wdev.108
Michaluk, P., Kolodziej, L., Mioduszewska, B., Wilczynski, G. M., Dzwonek, J., Jaworski, J., . . . Kaczmarek, L. (2007). Beta-dystroglycan as a target for MMP-9, in response to enhanced neuronal activity. J Biol Chem, 282(22), 16036-16041. doi:10.1074/jbc.M700641200
Miech, C., Pauer, H. U., He, X., & Schwarz, T. L. (2008). Presynaptic local signaling by a canonical wingless pathway regulates development of the Drosophila neuromuscular junction. J Neurosci, 28(43), 10875-10884. doi:10.1523/JNEUROSCI.0164-08.2008
Monastirioti, M., Gorczyca, M., Rapus, J., Eckert, M., White, K., & Budnik, V. (1995). Octopamine Immunoreactivity in the Fruit Fly Drosophila melanogaster. The Journal of comparative neurology, 356(2), 275-287.
Nagy, V., Bozdagi, O., Matynia, A., Balcerzyk, M., Okulski, P., Dzwonek, J., . . . Huntley, G. W. (2006). Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. Journal of Neuroscience, 26(7), 1923-1934. doi:10.1523/Jneurosci.4359-05.2006
Neves, R. V. P., Rosa, T. S., Souza, M. K., Oliveira, A. J. C., Gomes, G. N. S., Brixi, B., . . . Moraes, M. R. (2019). Dynamic, Not Isometric Resistance Training Improves Muscle Inflammation, Oxidative Stress and Hypertrophy in Rats. Front Physiol, 10, 4. doi:10.3389/fphys.2019.00004
Nishimura, A., Sugita, M., Kato, K., Fukuda, A., Sudo, A., & Uchida, A. (2010). Hypoxia Increases Muscle Hypertrophy Induced by Resistance Training. International Journal of Sports Physiology and Performance, 5(4), 497-508.
O'Sullivan, S., Medina, C., Ledwidge, M., Radomski, M. W., & Gilmer, J. F. (2014). Nitric oxide-matrix metaloproteinase-9 interactions: biological and pharmacological significance--NO and MMP-9 interactions. Biochim Biophys Acta, 1843(3), 603-617. doi:10.1016/j.bbamcr.2013.12.006
Packard, M., Jokhi, V., Ding, B., Ruiz-Canada, C., Ashley, J., & Budnik, V. (2015). Nucleus to Synapse Nesprin1 Railroad Tracks Direct Synapse Maturation through RNA Localization. Neuron, 86(4), 1015-1028. doi:10.1016/j.neuron.2015.04.006
Packard, M., Koo, E. S., Gorczyca, M., Sharpe, J., Cumberledge, S., & Budnik, V. (2002). The Drosophila Wnt, Wingless, Provides an Essential Signal for Pre- and Postsynaptic Differentiation. CELL</cja:jid> Cell, 111(3), 319-330.
Page-McCaw, A., Serano, J., Sante, J. M., & Rubin, G. M. (2003). Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell, 4(1), 95-106.
Peter, A. K., Cheng, H., Ross, R. S., Knowlton, K. U., & Chen, J. (2011). The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog Pediatr Cardiol, 31(2), 83-88. doi:10.1016/j.ppedcard.2011.02.003
Pfister, B. J., Iwata, A., Meaney, D. F., & Smith, D. H. (2004). Extreme stretch growth of integrated axons. J Neurosci, 24(36), 7978-7983. doi:10.1523/JNEUROSCI.1974-04.2004
Piccioli, Z. D., & Littleton, J. T. (2014). Retrograde BMP signaling modulates rapid activity-dependent synaptic growth via presynaptic LIM kinase regulation of cofilin. J Neurosci, 34(12), 4371-4381. doi:10.1523/JNEUROSCI.4943-13.2014
Powers, S. K., Ji, L. L., Kavazis, A. N., & Jackson, M. J. (2011). REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE. Comprehensive Physiology, 1(2), 941-969.
Rogers, R. S., & Nishimune, H. (2017). The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol, 57-58, 86-105. doi:10.1016/j.matbio.2016.08.008
Roman, B. I., Verhasselt, S., & Stevens, C. V. (2018). Medicinal Chemistry and Use of Myosin II Inhibitor ( S)-Blebbistatin and Its Derivatives. J Med Chem, 61(21), 9410-9428. doi:10.1021/acs.jmedchem.8b00503
San Martin, A., Rela, L., Gelb, B., & Pagani, M. R. (2017). The Spacing Effect for Structural Synaptic Plasticity Provides Specificity and Precision in Plastic Changes. J Neurosci, 37(19), 4992-5007. doi:10.1523/JNEUROSCI.2607-16.2017
Sanes, J. R. (2003). The basement membrane/basal lamina of skeletal muscle. J Biol Chem, 278(15), 12601-12604. doi:10.1074/jbc.R200027200
Schneider, M., Khalil, A. A., Poulton, J., Castillejo-Lopez, C., Egger-Adam, D., Wodarz, A., . . . Baumgartner, S. (2006). Perlecan and Dystroglycan act at the basal side of the Drosophila follicular epithelium to maintain epithelial organization. Development, 133(19), 3805-3815. doi:10.1242/dev.02549
Schoenfeld, B. J. (2010). The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. Journal of Strength and Conditioning Research, 24(10), 2857-2872. doi:10.1519/JSC.0b013e3181e840f3
Schuster, C. M., Davis, G. W., Fetter, R. D., & Goodman, C. S. (1996). Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron, 17(4), 641-654.
Shakiryanova, D., Klose, M. K., Zhou, Y., Gu, T., Deitcher, D. L., Atwood, H. L., . . . Levitan, E. S. (2007). Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release. J Neurosci, 27(29), 7799-7806. doi:10.1523/JNEUROSCI.1879-07.2007
Shaver, S. A., Riedl, C. A., Parkes, T. L., Sokolowski, M. B., & Hilliker, A. J. (2000). Isolation of larval behavioral mutants in Drosophila melanogaster. Journal of Neurogenetics, 14(4), 193-205.
Sigrist, S. J., Reiff, D. F., Thiel, P. R., Steinert, J. R., & Schuster, C. M. (2003). Experience-dependent strengthening of Drosophila neuromuscular junctions. J Neurosci, 23(16), 6546-6556.
Stasiv, Y., Regulski, M., Kuzin, B., Tully, T., & Enikolopov, G. (2001). The Drosophila nitric-oxide synthase gene (dNOS) encodes a family of proteins that can modulate NOS activity by acting as dominant negative regulators. J Biol Chem, 276(45), 42241-42251. doi:10.1074/jbc.M105066200
Straight, A. F., Cheung, A., Limouze, J., Chen, I., Westwood, N. J., Sellers, J. R., & Mitchison, T. J. (2003). Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science, 299(5613), 1743-1747. doi:10.1126/science.1081412
Sullivan, K. M. C., Scott, K., Zuker, C. S., & Rubin, G. M. (2000). The ryanodine receptor is essential for larval development in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 5942-5947. doi:DOI 10.1073/pnas.110145997
Terena, S. M., Fernandes, K. P., Bussadori, S. K., Deana, A. M., & Mesquita-Ferrari, R. A. (2017). Systematic review of the synergist muscle ablation model for compensatory hypertrophy. Rev Assoc Med Bras (1992), 63(2), 164-172. doi:10.1590/1806-9282.63.02.164
Tsai, P. I., Kao, H. H., Grabbe, C., Lee, Y. T., Ghose, A., Lai, T. T., . . . Chien, C. T. (2008). Fak56 functions downstream of integrin alphaPS3betanu and suppresses MAPK activation in neuromuscular junction growth. Neural Dev, 3, 26. doi:10.1186/1749-8104-3-26
Tsai, P. I., Wang, M., Kao, H. H., Cheng, Y. J., Lin, Y. J., Chen, R. H., & Chien, C. T. (2012). Activity-dependent retrograde laminin A signaling regulates synapse growth at Drosophila neuromuscular junctions. Proc Natl Acad Sci U S A, 109(43), 17699-17704. doi:10.1073/pnas.1206416109
Urbano, J. M., Torgler, C. N., Molnar, C., Tepass, U., Lopez-Varea, A., Brown, N. H., . . . Martin-Bermudo, M. D. (2009). Drosophila laminins act as key regulators of basement membrane assembly and morphogenesis. Development, 136(24), 4165-4176. doi:10.1242/dev.044263
Varkuti, B. H., Kepiro, M., Horvath, I. A., Vegner, L., Rati, S., Zsigmond, A., . . . Malnasi-Csizmadia, A. (2016). A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci Rep, 6, 26141. doi:10.1038/srep26141
Vasin, A., Sabeva, N., Torres, C., Phan, S., Bushong, E. A., Ellisman, M. H., & Bykhovskaia, M. (2019). Two Pathways for the Activity-Dependent Growth and Differentiation of Synaptic Boutons in Drosophila. eNeuro, 6(4). doi:10.1523/ENEURO.0060-19.2019
Vasin, A., Zueva, L., Torrez, C., Volfson, D., Littleton, J. T., & Bykhovskaia, M. (2014). Synapsin regulates activity-dependent outgrowth of synaptic boutons at the Drosophila neuromuscular junction. J Neurosci, 34(32), 10554-10563. doi:10.1523/JNEUROSCI.5074-13.2014
Vlach, H. A., & Sandhofer, C. M. (2012). Distributing Learning Over Time: The Spacing Effect in Children's Acquisition and Generalization of Science Concepts. childdevelopment Child Development, 83(4), 1137-1144.
Wackerhage, H., Schoenfeld, B. J., Hamilton, D. L., Lehti, M., & Hulmi, J. J. (2019). Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol (1985), 126(1), 30-43. doi:10.1152/japplphysiol.00685.2018
Waerhaug, O., Dahl, H. A., & Kardel, K. (1992). Different Effects of Physical-Training on the Morphology of Motor-Nerve Terminals in the Rat Extensor Digitorum Longus and Soleus Muscles. Anatomy and Embryology, 186(2), 125-128.
Wairkar, Y. P., Fradkin, L. G., Noordermeer, J. N., & DiAntonio, A. (2008). Synaptic defects in a Drosophila model of congenital muscular dystrophy. J Neurosci, 28(14), 3781-3789. doi:10.1523/JNEUROSCI.0478-08.2008
Wan, H. I., DiAntonio, A., Fetter, R. D., Bergstrom, K., Strauss, R., & Goodman, C. S. (2000). Highwire regulates synaptic growth in Drosophila. Neuron, 26(2), 313-329.
Wlodarczyk, J., Mukhina, I., Kaczmarek, L., & Dityatev, A. (2011). Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev Neurobiol, 71(11), 1040-1053. doi:10.1002/dneu.20958
Yakubovich, N., Silva, E. A., & O'Farrell, P. H. (2010). Nitric oxide synthase is not essential for Drosophila development. Current Biology Current Biology, 20(4), R141-R142.
Yamada, M., Sankoda, Y., Tatsumi, R., Mizunoya, W., Ikeuchi, Y., Sunagawa, K., & Allen, R. E. (2008). Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int J Biochem Cell Biol, 40(10), 2183-2191. doi:10.1016/j.biocel.2008.02.017
Zhang, S., Dailey, G. M., Kwan, E., Glasheen, B. M., Sroga, G. E., & Page-McCaw, A. (2006). An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion. Genes Dev, 20(14), 1899-1910. doi:10.1101/gad.1426906