簡易檢索 / 詳目顯示

研究生: 莊頌彥
Juang, Sean Sung-Yen
論文名稱: 利用偏振拉曼光譜在石墨烯薄膜的應力分析
Probing strain effect on graphene flake using polarized Raman spectroscopy
指導教授: 崔祥辰
Chui, Hsiang-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 55
中文關鍵詞: 石墨烯拉曼散射表面增強式拉曼光譜針尖加強式拉曼光譜偏振拉曼光譜應力應變
外文關鍵詞: Graphene, Raman scattering, Surface enhanced Raman spectroscopy, Tip-enhanced Raman spectroscopy, Polarized Raman spectroscopy, Strain, Stress
相關次數: 點閱:115下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯,一種厚度只有一到數原子層的材料,且具有特殊的光學、力學及電學特性,所以在研發新式的奈米元件上具有很高的應用潛力,是近年來最熱門的薄膜材料。為了瞭解石墨烯的各項特性,科學家們利用許多量測技術去探討石墨烯,其中又以拉曼光譜是特別重要的工具,因為石墨烯的拉曼光譜可以用來探討石墨烯的特性、層數……等等。在本論文中,首先,將會介紹石墨烯以及懸掛式石墨烯的拉曼光譜。接著,由於石墨烯的拉曼訊號十分微弱,我們利用表面電漿增強的技術來增強拉曼訊號,為了瞭解石墨烯與金屬奈米粒子的關係或著金屬奈米粒子與金屬奈米粒子之間的關係,我們利用近場光學模式下的探針加強式拉曼光譜的技術來探討。最後,石墨烯上應變或應力是一種重要的特性,因此,如何量測及探索石墨烯上未知的應變或應力是一個重要的科學問題。我們利用偏振拉曼光譜來探索石墨烯固有的應變或應力,藉由不同的激發光源來量測與比較之外,還有利用表面電漿增強的技術來增強拉曼訊號來增加量測的效率。而根據上述的研究,我們相信對於石墨烯在光學上或電子元件上的應用會更有幫助。

    Graphene is the thin material with one to several atomic layers. Graphene is one of the most popular membranous films with great potential on fabricating new types of nanodevices because of its unique optical, mechanical, and electrical properties. Scientists have utilized many detection techniques to investigate the electronic or optical characteristics of graphene. Among these, Raman spectroscopy is the most important tool. Because of the Raman spectrum of graphene can be used to explore the properties of graphene and the few layers of graphene. In this thesis, the Raman spectroscopy of graphene and suspended graphene will be introduced first. Then, we used the technique of surface enhanced Raman scattering (SERS) to enhance the Raman signal. In order to realize the relationship between graphene and metal nanoparticles or metal nanoparticle and metal nanoparticle, we use the tip-enhanced Raman scattering (TERS) to observe the phenomenon. Previous studies provided insufficient information in strain or stress on graphene. We measured the strain or stress on graphene by using the polarized Raman spectroscopy to compare different excited sources, and using the SERS to enhance measurement efficiency. The results of present study provided very useful information of graphene in application of optical and electrical devices.

    論文摘要 I ABSTRACT II 致謝 III Table of Contents V List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1-1 Introduction 1 1-2 Research Background 3 1-3 Research Motivation 5 1-4 Overview of the Thesis 5 Chapter 2 Raman spectroscopy of single-layer graphene 7 2-1 Introduction 7 2-2 The Fabrication Process of the Graphene 8 2-3 Determine the number of layers of graphene and edges 9 2-4 Raman spectroscopy system 12 2-5 Raman spectra of graphene 16 2-6 Experimental Results and Discussions 20 2-7 Summary 23 Chapter 3 Surface Enhanced Raman Scattering and Tip-Enhance Raman Scattering in graphene 24 3-1 Introduction 24 3-2 Experimental Results and Discussions 25 3-3 Summary 30 Chapter 4 Strain effect on graphene surface by Polarized Raman Spectroscopy 32 4-1 Introduction 32 4-2 Polarized Raman Spectroscopy 38 4-3 Experimental Results and Discussions 40 4-4 Summary 49 Chapter 5 Conclusions 51 References 53

    [1]Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
    [2]Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
    [3]Gupta, A.K., et al., Probing Graphene Edges via Raman Scattering. Acs Nano, 2009. 3(1): p. 45-52.
    [4]Gao, L.B., et al., Total color difference for rapid and accurate identification of graphene. Acs Nano, 2008. 2(8): p. 1625-1633.
    [5]Ferrari, A.C., et al., Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006. 97(18).
    [6]Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91(6).
    [7]Wang, Y.Y., et al., Interference enhancement of Raman signal of graphene. Applied Physics Letters, 2008. 92(4).
    [8]Ni, Z.H., et al., Graphene thickness determination using reflection and contrast spectroscopy. Nano Letters, 2007. 7(9): p. 2758-2763.
    [9]Wang, Y.Y., et al., Raman studies of monolayer graphene: The substrate effect. Journal of Physical Chemistry C, 2008. 112(29): p. 10637-10640.
    [10]Suëtaka. W, Surface infrared and raman spectroscopy: Methods and applications (Plenum, New York, 1995).
    [11]Malard, L.M., et al., Raman spectroscopy in graphene. Physics Reports-Review Section of Physics Letters, 2009. 473(5-6): p. 51-87.
    [12]imenta, M.A., et al., Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 2007. 9(11): p. 1276-1291.
    [13]Stiles, P.L., et al., Surface-Enhanced Raman Spectroscopy. Annual Review of Analytical Chemistry, 2008. 1: p. 601-626.
    [14]Schedin, F., et al., Surface-Enhanced Raman Spectroscopy of Graphene. Acs Nano, 2010. 4(10): p. 5617-5626.
    [15]Lee, J., K.S. Novoselov, and H.S. Shin, Interaction between Metal and Graphene: Dependence on the Layer Number of Graphene. Acs Nano, 2011. 5(1): p. 608-612.
    [16]Lee, J., et al., Surface-Enhanced Raman Scattering of Single- and Few-Layer Graphene by the Deposition of Gold Nanoparticles. Chemistry-a European Journal, 2011. 17(8): p. 2381-2387.19.
    [17]Domke, K.F. and B. Pettinger, Tip-enhanced Raman spectroscopy of 6H-SiC with graphene adlayers: selective suppression of E1 modes. Journal of Raman Spectroscopy, 2009. 40(10): p. 1427-1433.
    [18]Saito, Y., et al., Nano-scale analysis of graphene layers by tip-enhanced near-field Raman spectroscopy. Journal of Raman Spectroscopy, 2009. 40(10): p. 1434-1440.
    [19]Stadler, J., T. Schmid, and R. Zenobi, Nanoscale Chemical Imaging Using Top-Illumination Tip-Enhanced Raman Spectroscopy. Nano Letters, 2010. 10(11): p. 4514-4520.
    [20]Mohiuddin, T.M.G., et al., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Physical Review B, 2009. 79(20).
    [21]Huang, M.Y., et al., Probing Strain-Induced Electronic Structure Change in Graphene by Raman Spectroscopy. Nano Letters, 2010. 10(10): p. 4074-4079.
    [22]Huang, C.W., et al., Revealing anisotropic strain in exfoliated graphene by polarized Raman spectroscopy. Nanoscale, 2013. 5(20): p. 9626-9632.
    [23]Casiraghi, C., et al., Raman Spectroscopy of Graphene Edges. Nano Letters, 2009. 9(4): p. 1433-1441..
    [24]Cong, C.X., T. Yu, and H.M. Wang, Raman Study on the G Mode of Graphene for Determination of Edge Orientation. Acs Nano, 2010. 4(6): p. 3175-3180.
    [25]Calizo, I., et al., Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Letters, 2007. 7(9): p. 2645-2649.
    [26]Lee, C., et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-388.

    下載圖示 校內:2018-08-21公開
    校外:2018-08-21公開
    QR CODE