簡易檢索 / 詳目顯示

研究生: 胡延彰
Hu, Yen-chang
論文名稱: 美式選擇權定價之數值方法
A Numerical Method For Pricing American Call Option
指導教授: 沈士育
Shen, Shih-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 43
中文關鍵詞: 股利率美式選擇權積分表現法
外文關鍵詞: American option, dividend yield, integral representation
相關次數: 點閱:131下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究報告主要在探討發放股利之美式買權定價之問題,由於美式買權可以提前履約,本文以Black-Scholes Option Pricing Model為其數學模型,再設計一積分表現式,用疊代法來求得最佳履約價格,進而求得標的資產發放股利之美式買權價格,其結果再與歐式買權價格比較。最後以股價、履約價格、股價波動率、無風險利率、股利率以及到期日等因素變化是否影響美式買權與歐式買權之價格相比較。

    This study deals with the prices of American option on dividend-paying. Because American call option can early exercise, in my master thesis, with Black-Scholes Option Pricing Model, I design integral representation to obtain the optimum early exercise boundary, this can evaluate the price of American call option on dividend-paying assets and compare with Europe call option. The results are used to compare with the valuation of other methods, and sensitive analysis for parameters is presented.

    第一章 緒論......1 1.1 選擇權介紹.....1 1.2 美式選擇權.........10 1.3 選擇權定價......12 1.4 研究目的和章節大綱................15 第二章 數學模型和邊界值問題.............16 2.1 發放股利下之Black-Scholes Eqution.............16 2.2 最佳履約時機...............19 2.3 Heat Equation轉換.......21 第三章 數值方法推導......23 3.1 積分表現式............23 3.2 數值方法......................25 第四章 數值例....................28 4.1 發放股利之美式買權最佳履約曲線.........28 4.2 影響選擇權價格差的因素...........32 第五章 結論........40 參考文獻..............41

    中文參考文獻:
    [1] 陳威光, “選擇權 理論、實務與應用” ,智勝文化出版社,臺北市,2001
    [2] 陳松男, “基礎選擇權與期貨” ,新陸書局,臺北市,2003
    [3] 塚越一雄,“C語言完全入門”,博碩文化,台北縣汐止市,2001
    [4] 蔡明憲、廖四郎、徐守德、許溪南,“美式選擇權的定價-隱含
    相信模型及美國S&P100指數選擇權的應用”,中國財務學刊,第八卷 第一期,頁33-66,2000
    [5] 嚴至賢,“應用邊界元素法評價發放股利之美式選擇權”,國立成功大學應用數學所碩士論文,2006

    外文參考文獻:
    [1] Amin, K. I., ” On the computation of continuous time option prices using discrete approximations”, Journal of Financial and Quantitative Analysis, Vol.26, No.4, 477-495, 1991.
    [2] Black, F., and M. Scholes, ”Pricing of Options and Corporate Liabilities”, Journal of Political Economics,81,637-659, 1973.
    [3] Boyle, P., “Options: A Monte Carlo Approach ”, Journal of Financial Economics, 4, 323-338, 1977.
    [4] Brennan M J, Schwartz E S., “Finite difference methods and jump processes arising in the pricing of contingent claims:A synthesis[J]. ”
    ,Journal of Financial and Quantitative Analysis, 461-474, 1978.
    [5] Blomeyer, E. C., “An analytic approximation for the American put price for options on stocks with dividends ”, Journal of Financial and Quantitative Analysis, Vol.21, No.2, 229-233, 1986.
    [6] Barone-Adesi, G. and R. E. Whaley, “ The valuation of American call options and the expected ex-dividend stock price decline”, Journal of Financial Economics 17, 91-111, 1986.
    [7] Brenner M., Courtadon, G and Subrahmanyam, M., “Options on Stocks and Options on Futures ”, Journal of Banking and Finance, 773-82, 1989.
    [8] Barraquand, J., and D. Martineau, “Numerical Valuation of High Dimensional Multivariate American Securities”,Journal of Financial and Quantitative Analysis, 30, 3, 383-405, 1995
    [9] Broadie, M., and P. Glasserman, “Pricing American-Style Securities Using Simulation”, Journal of Economic Dynamics and Control, 21, 8-9, 1323-1352, 1997
    [10]Cox, J.C., S. A. Ross, M. Rubinstein, “Option Pricing: A Simplified Approach”, Journal of Financial Economics 7, 229-264, 1979.
    [11] Merton, R.C., “Theory of Rational Option Pricing”, Bell Journal of Economics and Management Science 4, 141-183, 1973.
    [12] Tilley, J. A., “Valuing American Options in a Path Simulation Model”, Transactions of the Society of Actuaries, 45, 83-104, 1993.

    下載圖示 校內:立即公開
    校外:2007-08-13公開
    QR CODE