簡易檢索 / 詳目顯示

研究生: 邱屏憲
Chiu, Ping-Hsien
論文名稱: 用奈微米流體裝置進行稀薄濃度樣品的混合、預濃縮、分離和收集
Mixing, Preconcentration, Separation, and Collection of Diluted Samples on Micro–Nanofluidic Devices
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 105
中文關鍵詞: 電動微混合器微流體電泳濃度極化樣品預集中
外文關鍵詞: Electrokinetic micromixing, Microfluidics, Electrophoresis, Concentration Polarization, Sample Preconcentration
相關次數: 點閱:122下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究製作出可應用於樣品預濃縮的奈微米晶片利用微機電技術,並使用陽離子選擇性膜(Nafion)代替奈米管道。Nafion是使用圖形技術打印在玻璃結構上並靠近在微米和奈米的界面處,並結合在聚二甲基矽氧烷管道上。當施加電場於微流體晶片時,由於陽離子選擇性膜內孔徑的電雙層重疊現象,使得陽離子選擇性膜內形成離子選擇之特性。此特性造成奈米通道內存在正離子與負離子的通量差異,導致在微奈米管道介面形成濃度極化之效應,在離子交換膜附近濃度梯度的發生。
    在本研究中主要探討為兩部分,第一部分是在許多的設備裝置上生化或是生物分子的檢測,像是醫療檢測,遺傳檢測,藥物發現等等,快速混合是必須的。但卻沒考慮到這項混合裝置不能適用於在生醫生物分子上做檢測。因此將會利用螢光黃(負電荷) ,若丹明6G(正電荷)和若丹明B(電中性)來證明此裝置中只能使電中性的分子做混合,帶電荷的分子則是無法適用。在管道方面,討論幾何因素對樣品預濃縮的影響,透過直通管道和漸縮管道同時進行樣品聚集。漸縮管道是在微米通道的中間,將原本管道的寬度縮小了一半,利用不同流速的影響,使樣品可以集中在較小的區域。因此,在這縮小的區域,在這縮小的單位面積裡熒光濃度會增加。
    第二部分是透過直通管道和漸縮管道同時進行樣品聚集、分離和導引。將多種樣品同時預濃縮與分離(包含螢光粒子、牛血清白蛋白和四甲基若丹明異硫氰酸鹽),並檢測臨床相關樣品,例如C反應蛋白。在漸縮管道中設計閥門使單一種樣品分離到單一通道儲存槽中。電泳是在微流道中施加電壓使電解液內帶電分子移到毛細管相反電荷的一端,因不同分子的大小對電荷不同,以不同速率在管中移動,達到分離效果。利用兩種樣品所產生之電泳力的差異達到分離效果。此方式能在樣品預濃縮時觀測濃度判定外,也能收集於儲存槽中,方便取出做後續的檢測應用。在一般情況下,證實了可行性並根據低免疫測定或各種多品種的樣本檢測裝置濃度的生化和生物醫學領域。因此,該新型裝置可以改善傳統的醫療設施檢測極限。

    In this study, we demonstrate production of a microfluidic chip through a micro-electromechanical technique and, by use of cation selective membrane (Nafion) instead of a nanochannel. The Nafion is printed on a glass substrate near the micro-and nano-junction using patterning techniques, and bonded onto a Polydimethylsiloxane (PDMS) microchannel. By applying an electric field to the microfluid chip, the nano-passage inside Nafion has the electric double layer overlapping to yield the Nafion becomes ion selective. The ion-selective membrane has a flux difference of cation and anion, resulting in a concentration polarization phenomenon at the micro and nano interface. The concentration polarization results in concentration gradient near the membrane.
    In the first part of this thesis, fast mixing is necessary for biochemical or biomolecular detection, such as medical detection, genetic detection, and drug discovery on many equipments. However, such a mixing device could not be used for detection of biomolecules. Therefore, this study used fluorescein (negative charge), rhodamine 6G (positive charge), and rhodamine B (electrically neutral) to prove that the device only mixes electroneutral molecules, and it is inapplicable of charging molecules. We will discuss how geometric factors influence preconcentration through a straight microchannel and a convergent microchannel. A convergent channel is in the middle of a channel and narrows the width, so that the sample can be concentrated in smaller areas by the impact of different flow rates. As a result, the fluorescence concentration increases in this reduced unit area.

    The second part of this thesis focuses on proposes a microfluidic device consisting of a straight microchannel and a single convergent microchannel and a Nafion-nanomembrane for the simultaneous concentration, separation and guidance of mixed biomedical samples. The feasibility of the device is demonstrated by performing CRP detection tests using various sample concentrations and separating a mixed sample consisting of negatively-charged bovine serum albumin (BSA), tetramethylrhodamine(TAMRA) and fluorescent polymer beads. In addition, we add magnet valve for controlling the flow of fluids in microfluidic channels. Since different ions have different charge-to-mass rations they can be separated due to differences in their electrophoretic mobilities. Analytes can be separated according to ionic mobility. In general, the present results confirm the feasibility of the device for the immunoassay or detection of various multi-species samples under low concentration in the biochemical and biomedical fields. The novel device can therefore improve the detection limit of traditional medical facilities.

    Abstract I 中文摘要 III 誌謝 V Contents VI List of Tables IX List of Figures X Abbreviation XIX Nomenclature XXI Greeks XXII Chapter 1 Introduction 1 1.1 MEMS technology and Bio-MEMS 1 1.2 Micromixing chip 2 1.3 Microfluidic chip 7 1.4 Biochemical detection chip 15 Chapter 2 Electrokinetic Effect 21 2.1 Foreword 21 2.2 Electrical Double Layer (EDL) 21 2.2.1 Overlapped Double Layers 23 2.3 Electroosmosis 24 2.4 Electrophoresis 25 2.5 Concentration Polarization Phenomena 26 Chapter 3 Materials and Methods 30 3.1 Mask 30 3.2 Fabrication of the Integrated Microchip 30 3.2.1 Substrate Pretreatment 31 3.2.2 Photoresist Coating 31 3.2.3 Exposure 32 3.2.4 Development 32 3.2.5 PDMS Casting 32 3.2.6 Oxygen Plasma Bonding 33 3.2.7 Nafion Patterned Process 34 3.3 Experimental sections 34 3.3.1 Micromixing Chip 34 3.3.2 Microfluidic Chip 36 3.3.3 Biochemical Detection (I) 38 3.3.4 Biochemical Detection (II) 41 3.4 Instrument and Software 45 3.5 Experimental Setup 46 Chapter 4 Results and Discussion 48 4.1 Micromixing Chip 48 4.2 Microfluidic Chip 54 4.2.1 Ion depletion and preconcentration 54 4.2.2 Effect of applied voltage on preconcentration performance 55 4.2.3 Effect of microchannel geometry on preconcentration of fluorescein disodium salt dehydrate sample 58 4.2.4 Effect of microchannel geometry on preconcentration of FITC-BSA sample 60 4.3 Biochemical Detection (I) 62 4.4 Biochemical Detection (II) 74 4.4.1 Concurrent preconcentration and guidance of FITC-BSA sample in straight and convergent microchannels 74 4.4.2 Concurrent preconcentration, separation and guidance of mixed-species sample 77 Chapter 5 Conclusions 84 References 88 Curriculum Vitae 104

    [1] Manz, A., Harrison, D. J., Verpoorte, E. M. J., Fettinger, J. C., Paulus, A., Ludi, H., Widmer, H. M., “Planar chips technology for iniaturization and integration of separation techniques into monitoring systems - capillary electrophoresis on a chip” J. Chromatogr. A, 593: 253-258, 1992.
    [2] Bao, M., Wang, W., “Future of microelectromechanical systems (MEMS)” Sensor. Actuat. A-Phys., 56: 135-141, 1996.
    [3] Mourzina, Y., Kalyagin, D., Steffen, A., Offenhausser, A., “Electrophoretics eparations of neuromediators on microfluidic devices” Talanta, 70: 489–498, 2006.
    [4] Lin, C. C., Hsu, J. L., Lee, G. B., “Samplepreconcentration in microfluidic devices” Microfluid. Nanofluid., 10: 481–511, 2011.
    [5] Ross, D., Locasclo, L., “Microfluidic temperature gradient focusing” Anal. Chem., 74: 2556–2564, 2002.
    [6] Zheng, L., Brody, J. P., Burke, P. J., “Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly” Biosens. Bioelectron., 20: 606–619, 2004.
    [7] Mohamadi, M. R., Kaji, N., Tokeshi, M., Baba, Y., “Online preconcentration by transient isotachophoresis in linear polymer on a poly (methyl methacrylate) microchip for separation of human serum albumin immunoassay mixtures” Anal. Chem., 79: 3667–3672, 2007.

    [8] Jung, B. G., Zhu, Y. G., Santiago, J. G., “Detection of 100 aM fluorophores using a high-sensitivity on-chip CE system and transient isotachophoresis” Anal. Chem., 79: 345–349, 2007.
    [9] Mohan, D., Lee, C. S., “On-line coupling of capillary isoelectric focusing with transient isotachophoresis-zone electrophoresis: A two-dimensional separation system for proteomics” Electrophoresis, 23: 3160–3167, 2002.
    [10] Kuo, T. C., Kim, H. K., Cannon, D. M., Shannon, M. A., Sweedler, J. V., “Nanocapillary arrays effect mixing and reaction in multilayer fluidic structures” Angew. Chem. Int. Edit., 43: 1862–1865, 2004.
    [11] Chang, C. C., Yang, R. J., “Electrokinetic mixing in microfluidic systems” Microfluid. Nanofluid., 3: 501–525, 2007.
    [12] Hardt, S., Drese, K. S., Hessel, V., Schonfeld, F., “Theoretical and experimental characterization of a low-Reynolds number split and-recombine mixer” Microfluid. Nanofluid., 2: 237–248, 2006.
    [13] Hessel, V., Lowe, H., Schonfeld, F., “Micromixers—a review on passive and active mixing principles” Chem. Eng. Sci., 60: 2479–2501, 2005.
    [14] Mao, X., Juluri, B. K., Lapsley, M. I., Stratton, Z. S., Huang, T. J., “Milliseconds microfluidic chaotic bubble mixer” Microfluid. Nanofluid., 8: 139–144, 2010.
    [15] Nguyen, N. T., Wu, Z. G., “Micromixers-a review” J. Micromech. Microeng., 15: R1–R16, 2005.
    [16] Wu, Z., Li, D., “Mixing and flow regulating by induced-charge electrokinetic flow in a microchannel with a pair of conducting triangle hurdles” Microfluid. Nanofluid., 5: 65–76, 2008.

    [17] Huang, M. Z., Yang, R. J., Tai, C. H., Tsai, C. H., Fu, L. M., “Application of electrokinetic instability flow for enhanced micromixing in cross-shaped microchannel” Biomed. Microdevices, 8: 309–315, 2006.
    [18] Lee, S. J., Kim, D., “Millisecond-order rapid micromixing with nonequilibrium electrokinetic phenomena” Microfluid. Nanofluid., 12: 897–906, 2012.
    [19] Mengeaud, V., Josserand, J., Girault, H. H., “Mixing processes in a zigzag microchannel: finite element simulations and optical study” Anal. Chem., 74: 4279–4286, 2002.
    [20] Oddy, M. H., Santiago, J. G., Mikkelsen, J. C., “Electrokinetic instability micromixing” Anal. Chem., 73: 5822–5832, 2011.
    [21] Hardt, S., Drese, K. S., Hessel, V., Schonfeld, F., “Passive micromixers for applications in the microreactor and mu TAS fields” Microfluid. Nanofluid., 1:108–118, 2005.
    [22] Tofteberg, T., Skolimowski, M., Andreassen, E., Geschke, O., “A novel passive micromixer: lamination in a planar channel system” Microfluid. Nanofluid., 8: 209–215, 2010
    [23] Xia, H. M., Wan, S. Y., Shu, C., Chew, Y. T., “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers” Lab Chip, 5: 748–755, 2005.
    [24] Xia, H. M., Shu, C., Wan, S. Y. M., Chew, Y. T., “Influence of the reynolds number on chaotic mixing in a spatially periodic micromixer and its characterization using dynamical system techniques” J. Micromech. Microeng., 16: 53–61, 2006.

    [25] Kim, D., Raj, A., Zhu, L., Masel, R. I., Shannon, M. A., “Nonequilibrium electrokinetic micro/nanofluidic mixer” Lab Chip, 8: 625–628, 2008.
    [26] Jannig, O., Nguyen, N. T., “A polymeric high-throughput pressure-driven micromixer using a nanoporous membrane” Microfluid. Nanofluid., 10: 513–519, 2011.
    [27] Dukhin, S. S., “Electrokinetic phenomena of the second kind and their applications” Adv. Colloid. Interface. Sci., 35: 173–196, 1991.
    [28] Hoeman, K. W., Lange, J. J., Roman, G. T., Higgins, D. A., Culbertson, C. T., “Electrokinetic trapping using titania nanoporous membranes fabricated using sol–gel chemistry on microfluidic devices. Electrophoresis, 30: 3160–3167, 2009.
    [29] Huang, K. D., Yang, R. J., “A nanochannel-based concentrator utilizing the concentration polarization effect” Electrophoresis, 29: 4862–4870, 2008.
    [30] Jacobson, S. C., Ramsey, J. M., “Microchip electrophoresis with sample stacking” Electrophoresis, 16: 481–486, 1995.
    [31] Jung, B., Bharadwaj, R., Santiago, J. G., “Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis” Electrophoresis, 24: 3476–3483, 2003.
    [32] Tai, C. H., Yang, R. J., Huang, M. Z., Liu, C. W., Tsai, C. H., Fu, L. M., “Micromixer utilizing electrokinetic instability-induced shedding effect” Electrophoresis, 27: 4982–4990, 2006.
    [33] Wainright, A., Nguyen, U. T., Bjornson, T. L., Boone, T. D., “Preconcentration and separation of double-stranded DNA fragments by electrophoresis in plastic microfluidic devices” Electrophoresis, 24: 3784–3792, 2003.

    [34] Kirby, B. J., Hasselbrink, E. F., “Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations” Electrophoresis, 25: 187–202, 2004.
    [35] Nischang, I., Chen, G., Tallarek, U., “Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds” J. Chromatogr. A., 1109: 32–50, 2006.
    [36] Shackman, J. G., Ross, D., “Counter-flow gradient electrofocusing” Electrophoresis, 28: 556–571, 2007.
    [37] Strathmann, H., “Ion-exchange membrane separation processes” Elsevier, New York, 2004.
    [38] Kim, S. M., Burns, M. A., Hasselbrink, E. F., “Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip” Anal. Chem., 78: 4779–4785, 2006.
    [39] Kim, S. J., Li, L. D., Han, J. Y., “Amplified electrokinetic response by concentration polarization near nanofluidic channel” Langmuir, 25: 7759–7765, 2009.
    [40] Kim, S. J., Ko, S. H., Kang, K. H., Han, J. Y., “Direct seawater desalination by ion concentration polarization” Nat. Nanotechnol., 5: 297–301, 2010.
    [41] Svobodova, Z., Mohamadi, M. R., Jankovicova, B., Esselmann, H., Verpillot, R., Otto, M., Taverna, M., Wiltfang, J., Viovy, J. L., Bilkova, Z., “ Development of a magnetic immunosorbent for on-chip preconcentration of amyloid β isoforms: Representatives of Alzheimer’s disease biomarkers” Biomicrofluidics, 6: 024126, 2012.

    [42] Puchberger-Enengl, D., Podszun, S., Heinz, H., Hermann, C., Vulto, P., Urban, G. A., “Microfluidic concentration of bacteria by on-chip electrophoresis” Biomicrofluidics, 5: 044111, 2011.
    [43] Jen, C. P., Chang, H. H., “A handheld preconcentrator for the rapid collection of cancerous cells using dielectrophoresis generated by circular microelectrodes in stepping electric fields” Biomicrofluidics, 5: 034101, 2011.
    [44] Huang, C., Liu, H., Bander, N. H., Kirby, B. J., “Enrichment of prostate cancer cells from blood cells with a hybrid dielectrophoresis and immunocapture microfluidic system” Biomed. Microdevices 15: 941-948, 2013.
    [45] Beyor, N., Seo, T. S., Liu, P., Mathies, R. A., “Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection” Biomed. Microdevices, 10: 909-917, 2008.
    [46] Anderson, N. L., Anderson, N. G., “The human plasma proteome: history, character, and diagnostic prospects” Mol. Cell. Proteomics 1: 845-867, 2002.
    [47] Xia, H., Mathew, B., John, T., Hegab, H., Feng, J., “Microfluidic based immunosensor for detection and purification of carbonylated proteins” Biomed. Microdevices, 15: 519-530, 2013.
    [48] Lei, K. F., Chen, K-H., Chang, Y-C., “Protein binding reaction enhanced by bi-directional flow driven by on-chip thermopneumatic actuator” Biomed. Microdevices, 16: 325-332, 2014.
    [49] Kim, S. J., Song, Y.-A., Han, J., “Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications” Chem. Soc. Rev., 39: 912-922, 2010.

    [50] Nge, P. N., Yang, W., Pagaduan, J. V., Woolley, A. T., “Ion-permeable membrane for on-chip preconcentration and separation of cancer marker proteins” Electrophoresis, 32: 1133-1140, 2011.
    [51] Zhu, H., Wang, G., Xie, D., Cai, B., Liu, Y., Zhao, X., “Au nanoparticles enhanced fluorescence detection of DNA hybridization in picoliter microfluidic droplets” Biomed. Microdevices 16: 479-485, 2014.
    [52] Shim, J. S., Geng, J., Ahn, C. H., Guo, P., “Formation of lipid bilayers inside microfluidic channel array for monitoring membrane-embedded nanopores of phi29 DNA packaging nanomotor” Biomed. Microdevices, 14: 921-928, 2012.
    [53] Burgi, D. S., Chien, R. L., “Optimization in sample stacking for high-performance capillary electrophoresis” Anal. Chem., 63: 2042-2047, 1991.
    [54] Gebauer, P., Bocek, P., “Recent progress in capillary isotachophoresis” Electrophoresis, 23: 3858-3864, 2002.
    [55] Bottenus, D., Jubery, T. Z., Dutta, P., Ivory, C. F., “10 000-fold concentration increase in proteins in a cascade microchip using anionic ITP by a 3-D numerical simulation with experimental results” Electrophoresis, 32: 550-562, 2011.
    [56] Goet, G., Baier, T., Hardt, S., Sen, A. K., “Isotachophoresis with emulsions” Biomicrofluidics, 7: 044103, 2013.
    [57] Astorga-Wells, J., Swerdlow, H., “Fluidic preconcentrator device for capillary electrophoresis of proteins” Anal. Chem. 75: 5207-5212, 2003.
    [58] Kim, K. B., Han, J. H., Choi, H., Kim, H. C., Chung, T. D., “Dynamic preconcentration of gold nanoparticles for surface-enhanced raman scattering in a microfluidic system” Small, 8: 378-383, 2012.

    [59] Quirino, J. P., Terabe, S., “ Exceeding 5000-Fold concentration of dilute analytes in micellar electrokinetic chromatography” Science, 282: 465-468, 1998.
    [60] Yu, C., Davey, M. H., Svec, F., Frechet, J. M. J., “Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device” Anal. Chem., 73: 5088-5096, 2001.
    [61] Oleschuk, R. D., Shultz-Lockyear, L. L., Ning, Y., Harrison, D. J., “Trapping of bead-based reagents within microfluidic systems:  on-chip solid-phase extraction and electrochromatography” Anal. Chem., 72: 585-590, 2000.
    [62] Mampallil, D., Tiwari, D., van den Ende, D., Mugele, F., “Sample preconcentration inside sessile droplets using electrowetting” Biomicrofluidics, 7: 044102, 2013.
    [63] Song, S., Singh, A. K., Kirby, B. J., “Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips” Anal. Chem., 76: 4589-4592, 2004.
    [64] Khandurina, J., Jacobson, S. C., Waters, L. C., Foote, R. S., Ramsey, J. M., “Microfabricated porous membrane structure for sample concentration and electrophoretic analysis” Anal. Chem., 71: 1815-1819, 1999.
    [65] Hlushkou, D., Dhopeshwarkar, R., Crooks, R. M., Tallarek, U., “The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units” Lab Chip, 8: 1153-1162, 2008.

    [66] Hatch, A. V., Herr, A. E., Throckmorton, D. J., Brennan, J. S., Singh, A. K., “Integrated preconcentration SDS−PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels” Anal. Chem., 78: 4976-4984, 2006.
    [67] Lee, J. H., Song, Y-AK., Han, J., “Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane” Lab Chip, 8: 596-601, 2008.
    [68] Yu, H., Lu, Y., Zhou, Y. G., Wang, F. B., He, F. Y., Xia, X. H., “A simple, disposable microfluidic device for rapid protein concentration and purificationvia direct-printing” Lab Chip, 8: 1496-1501, 2008.
    [69] Kim, P., Kim, S. J., Han, J., Suh, K. Y., “Stabilization of ion concentration polarization using a heterogeneous nanoporous junction” Nano Lett. 10: 16-23, 2010.
    [70] Dhopeshwarkar, R., Crooks, R. M., Hlushkou, D., Tallarek, U., “Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane” Anal. Chem., 80: 1039-1048, 2008.
    [71] Schoch, R., Han, J., Renaud, P., “Transport phenomena in nanofluidics” Rev. Mod. Phys., 80: 839-883, 2008.
    [72] Kim, S. J., Wang, Y.-C., Lee, J., Jang, H., Han, J., “Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel” Phys. Rev. Lett., 99: 044501, 2007.
    [73] Wang, Y., Pant, K., Chen, Z., Wang, G., Diffey, W. F., Ashley, P., Sundaram, S., “Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow” Microfluid. Nanofluid., 7: 683-696, 2009.
    [74] Wang, Y. C., Han, J., “Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator” Lab Chip, 8: 392-394, 2008.
    [75] Mikkonen, S., Rokhas, M. K., Jacksen, J., Emmer, A., “Sample preconcentration in open microchannels combined with MALDI-MS” Electrophoresis, 33: 3343-3350, 2012.
    [76] Rubinstein, I., Shtilman, L., “Voltage against current curves of cation exchange membranes” J. Chem. Soc. Farad. T. 2, 75: 231-246, 1979.
    [77] Barraga´n, V. M., Bauza, C. R., “Current–voltage curves for ion-exchange membranes: a method for determining the limiting current density” J. Colloid. Interf. Sci., 205: 365-373, 1998.
    [78] Pu, Q., Yun, J., Temkin, H., Liu, S., “Ion-enrichment and ion-depletion effect of nanochannel structures” Nano Lett., 4: 1099-1103, 2004.
    [79] Meagher, R. J., Thaitrong, N., “Microchip electrophoresis of DNA following preconcentration at photopatterned gel membranes” Electrophoresis, 33: 1236-1246, 2012.
    [80] Du, J. R., Juang, Y. J., Wu, J. T., Wei, H. H., “Long-range and superfast trapping of DNA molecules in an ac electrokinetic funnel” Biomicrofluidics, 2: 044103, 2008.
    [81] Wang, Y-C., Stevens, A. L., Han, J., “Million-fold preconcentration of proteins and peptides by nanofluidic filter” Anal. Chem., 77: 4293-4299, 2005.
    [82] Chun, H., Chung, T. D., Ramsey, J. M., “High yield sample preconcentration using a highly ion-conductive charge-selective polymer” Anal. Chem., 82: 6287-6292, 2010.

    [83] Kim, S. J., Han, J., “Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications” Anal. Chem., 80: 3507-3511, 2008.
    [84] Liu, V., Song, Y-Ak., Han, J., “Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip” Lab Chip, 10: 1485-1490, 2010.
    [85] Huang, K. D., Yang, R. J., “Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel” Microfluid. Nanofluid., 5: 631-638, 2008.
    [86] Chen, C. L., Yang, R. J., “Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent–divergent microchannels” Electrophoresis, 33: 751-757, 2012.
    [87] Li, S., Ye, Z., Hui, Y. S., Gao, Y., Jiang, Y., Wen, W., “On-chip DNA preconcentration in different media conductivities by electrodeless dielectrophoresis” Biomicrofluidics, 9: 054115, 2015.
    [88] Sanders, G. H. W., Manz, A., “Chip-based microsystems for genomic and proteomic analysis” Trac-Trend. Anal. Chem., 19: 364-378, 2000.
    [89] Mohamadi, R. M., Svobodova, Z., Bilkova, Z., Otto, M., Taverna, M., Descroix, S., Viovy, J. L., “An integrated microfluidic chip for immunocapture, preconcentration and separation of β-amyloid peptides” Biomicrofluidics, 9: 054117, 2015.
    [90] Jorgenson, J. W., Lukacs, K. D., “Zone electrophoresis in open-tubular glass capillaries” Anal. Chem., 53: 1298-1302, 1981.
    [91] Ross, R., “Mechanisms of disease: atherosclerosis - an inflammatory disease” New Engl. J. Med., 340: 115-126, 1999.

    [92] Shah, S. H., Newby, L. K., “C-reactive protein: a novel marker of cardiovascular risk” Cardiol. Rev., 11: 169-179, 2003.
    [93] Lippy, P., Ridker, P. M., Maseri, A., “Inflammation and atherosclerosis” Circulation, 105: 1135-1143, 2002.
    [94] Ridker, P. M., “Clinical application ofc-reactiveprotein for cardiovascular disease detection and prevention” Circulation, 107: 363-369, 2003.
    [95] Ridker, P. M., Rifai, N., Rose, L., Buring, J. E., Cook, N. R., “Comparison of c-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events” New Engl. J. Med., 347: 1557-1565, 2002.
    [96] Ridker, P. M., Buring, J. E., Shih, J., Maties, M., Hennekens, C. H., “Prospective study of C-reactive protein andthe risk of future cardiovascular events amongapparently healthy women” Circulation, 98: 731-733, 1998.
    [97] Person, T. A., Mensah, G. A., Alexander, R. W., Anderson, J. L., Cannon III, R.O., Criqui, M., Fadl, Y. Y., Fortmann, S. P., Hong, Y., Myers, G. L., Rifai, N., Smith Jr, S. C., Taubert, K., Tracy, R. P., Vinicor, F., “Markers of inflammation and cardiovascular disease: application to clinical and public health practice: astatement for healthcare professionals from the centers for disease control and prevention and the american heart association” Circulation, 107: 499-511, 2003.
    [98] Ridker, P. M., “C-reactive protein:asimple test to help predict risk of heart attack and stroke” Circulation, 108: e81-e85, 2003.
    [99] Ridker, P. M., Buring, J. E., Cook, N. R., Rifai, N., “C-reactive protein, the metabolicsyndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14719 initially healthy American women” Circulation, 107: 391-397, 2003.
    [100] Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P., Hennekens, C. H., “Inflammation, aspirin, and the riskofcardiovascular disease in apparently healthy men” New Engl. J. Med., 336: 973-979, 1997.
    [101] Yu, H. I., Sheu, W. H. H., Song, Y. M., Liu, H. C., Lee, W. J., Chen, Y. T., “C-reactive protein and risk factors forperipheral vascular disease in subjects with type 2 diabetes mellitus” Diabetic Med., 21: 336-341, 2004.
    [102] Jung, B., Bharadwaj, R., Santiago, J. G., “On-chip millionfold sample stacking using transient isotachophoresis” Anal. Chem., 78: 2319-2327, 2006.
    [103] Bottenus, D., Jubery, T. Z., Ouyang, Y., Dong, W. J., Dutta, P., Ivory, C. F., “10[thin space (1/6-em)]000-fold concentration increase of the biomarker cardiac troponin I in a reducing union microfluidic chip using cationic isotachophoresis” Lab Chip, 11: 890-898, 2011.
    [104] Foote, R. S., Khandurina, J., Jacobson, S. C., Ramsey, J. M., “Preconcentration of proteins on microfluidic devices using porous silica membranes” Anal. Chem., 77: 57-63, 2005.
    [105] Cui, H., Horiuchi, K., Dutta, P., Ivory, C. F., “Multistage isoelectric focusing in a polymeric microfluidic chip” Anal. Chem., 77: 7878-7886, 2005.
    [106] Kim, H., Kim, J., Kim, E.G., Heinz, A. J., Kwon, S., Chun, H., “Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration” Biomicrofluidics, 4: 043014, 2010.
    [107] Khandurina, J., McKnight, T. E., Jacobson, S. C., Waters, L. C., Foote, R. S., Ramsey, J. M., “Integrated system for rapid PCR-based DNA analysis in microfluidic devices” Anal. Chem., 72: 2995-3000, 2000.

    [108] Chao, C. C., Chiu, P. H., Yang, R. J., “Preconcentration of diluted biochemical samples using microchannel with integrated nanoscale Nafion membrane” Biomed. Microdevices, 17:25: 1-9, 2015.
    [109] Ko, S. H., Song, Y. A., Kim, S. J., Kim, M., Han, J., Kang, K. H., “Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization” Lab Chip, 12: 4472-4482, 2012.
    [110] Song, H., Wang, Y., Garson, C., Pant, K., “Nafion-film-based micro–nanofluidic device for concurrent DNA preconcentration and separation in free solution” Microfluid Nanofluid, 17: 693-699, 2014.
    [111] Hunter, R. J., “Zeta potential in colloid science: principles and applications” Academic Press, New York 8: 386, 1981.
    [112] Russel, W. B., Saville, D. A., Schowalter, W. R., Colloid Science: Principles and Applied Mathematics. Cambridge University Press, 1989.
    [113] Probstein, R. F., Physicochemical hydrodynamics: an Introduction (2nd ed.), New York: John Wiley and Sons, 1994.
    [114] Yang, C., Li, D. Q., Masliyah, J. H., “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects” International Journal of Heat and Mass Transfer, 41: 4229-4249, 1998.
    [115] Lyklema, J., “Electrokinetics after smoluchowski” Colloid. Surface. A., 222: 5-14, 2003.
    [116] Yang, R. J., Fu, L. M., Hwang, C. C., “Electroosmotic entry flow in a microchannel” J.Colloid Interf. Sci., 244: 173-179, 2001.
    [117] Patankar, N. A., Hu, H. H., “Numerical simulation of electroosmotic flow” Anal. Chem., 70: 1870-1881, 1998.
    [118] Ng, J. M. K., Gitlin, I., Stroock, A. D., Whitesides, G. M., “Components for integrated poly (dimethylsiloxane) microfluidic systems” Electrophoresis, 23: 3461-3473, 2002.
    [119] McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller O. J. A., Whitesides, G. M., “Fabrication of microfluidic systems in poly(dimethylsiloxane)” Electrophoresis, 21: 27-40, 2000.
    [120] McDonald, J. C., Whitesides, G. M., “Poly (dimethylsiloxane) as a material for fabricating microfluidic devices” Accounts Chem. Res., 35: 491-499, 2002.
    [121] Bhattacharya, S., Datta, A., Berg, J. M., Gangopadhyay, S., “Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength” J. Microelectromech. S., 14: 590-597, 2005.
    [122] Mishchuk, N. A., “The role of water dissociation in concentration polarisation of disperse particles” Colloid. Surface. A., 159: 467-475, 1999.
    [123] Mishchuk, N. A., Takhistov, P. V., “Electroosmosis of the second kind” Colloid. Surface. A., 95: 119–131, 1995.
    [124] Rubinstein, I., Zaltzman, B., “Electro-osmotically induced convection at a permselective membrane” Phys. Rev. E., 62: 2238–2251, 2000.
    [125] Zaltzman, B., Rubinstein, I., “Electro-osmotic slip and electroconvective instability” J. Fluid. Mech., 579: 173–226, 2007.
    [126] Kim, M., Jia, M., Kim, T., “Ion concentration polarization in a single and open microchannel induced by a surface-patterned permselective film” Analyst, 128: 1370–1378, 2013.

    [127] Borque, L., Bellod, L., Rus, A., Seco, M.L., Galisteo-Gonzalez, F., “Development and validation of an automated and ultrasensitive immunoturbidimetricassay for c-reactive protein” Clin. Chem., 46: 1839–1842, 2000.
    [128] Song, H. S., Wang, Y., Garson, C., Pant, K., “Nafion-film-based micro–nanofluidic device for concurrent DNA preconcentration and separation in free solution” Microfluid. Nanofluid.,17: 693-699, 2014.

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE