| 研究生: |
黃培綸 Huang, Pei-Lun |
|---|---|
| 論文名稱: |
鋁蜂巢結構受軸向衝擊之潰縮行為研究 A Study of Crushing Behavior of Aluminum Honeycombs Subjected to Axial Impact Loading Test |
| 指導教授: |
鄭泗滄
Jenq, Syh-Tsang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 蜂巢結構 、六角形單元 、平均潰縮力 、擬靜態壓縮 、動態衝擊 |
| 外文關鍵詞: | honeycomb structure, Hexagonal cell, Mean crushing force, Quasi-static compression, Dynamic impact |
| 相關次數: | 點閱:126 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的研究主旨為針對鋁蜂巢結構的軸向方向,探討其受到衝擊負載下結構之動態行為模式。研究中使用商用有限元素軟體LS-DYNA進行分析,首先透過對照參考文獻數據的方式,驗證有限元素模型的邊界條件以及材料參數等設定之合理性。在靜態壓縮實驗與模擬方面,將實驗求得之潰縮應力與理論預測值進行比較,並透過實驗數據與有限元素模型驗證,比較兩者變形圖以及潰縮力與位移關係圖,結果顯示出實驗與模擬的結果相當一致。在動態衝擊實驗方面,對試片進行落錘衝擊實驗,同樣藉由與實驗數據比對驗證有限元素模型之正確性,隨後則利用驗證之有限元素模型進行幾何參數探討,計算不同的單元厚度與尺寸的蜂巢結構其能量吸收效果,此部分的參數探討則可做為設計蜂巢結構的相關依據。
另外,最後章節探討於蜂巢結構的六角形單元間填入發泡材料並進行靜態壓縮實驗,與原始結構比較兩者之潰縮力與位移關係圖並計算其能量吸收,可以發現填入發泡材料之蜂巢結構吸收能量效果有大幅度的提升。最後利用有限元素模型模擬當結構受到之衝擊負載為斜向負載時,探討蜂巢結構在不同衝擊角度下潰縮力之變化以及變形行為,結果顯示出隨著角度增加蜂巢結構之潰縮力會隨之下降,而藉由觀察其變形圖可以發現此結果與蜂巢結構的變形模式改變有相當大的關聯性。
SUMMARY
The major purpose of this research is to investigate the dynamic impact response of aluminum honeycomb structure subjected to an axial impact loading. The explicit solver of FEM software LS-DYNA is used in current simulation. First, through the comparison with previous works to ensure the settings of finite element model is suitable, such as boundary conditions and material parameters. In the static compression test, we will compare the crushing stress calculated in experiment and obtained by analytical solution, and also compare the simulated results with experimental results. The simulated results agree well with the experimental ones in terms of overall force/crush curves and deformation patterns. Similarly, experimental results and simulated results are compared in dynamic impact tests to check the accuracy of finite element model. The verified model may be used to compute crush energy absorption for different honeycomb cell sizes, cell wall thicknesses. Therefore, this parameter studies can be the basis of designing honeycomb structure.
Furthermore, honeycomb structures filled with polyurethane foam is investigated in last chapter. By comparing the force/crush curves with original structure and computing the energy absorption of both under static compression, a significant energy absorption improvement in foam-filled honeycomb is found. Finally, the finite element model was also used to simulate honeycomb structures under dynamic combined shear-compression. The result reveals that crushing force becomes lower as the inclined angle increases, and by observing the deformation pattern it shows that this phenomenon associated with the change of deformation mode.
Keyword : honeycomb structure、Hexagonal cell、Mean crushing force、Quasi-static compression、Dynamic impact
Introduction
1. McFarland, R.K., “Hexagonal cell structures under post-buckling axial load,” AIAA Journal, 1(6) pp.1380~1385.
2.Wierzbicki, T., (1983), “Crushing analysis of metal honeycombs,” International Journal of Impact Engineering, 1(2) pp.157~174.
3. Wierzbicki, T., (1983), “On the crushing mechanics of thin-wall structures,” Journal of Applied Mechanics, 50 pp.727~734
4.Yin, Hanfeng, and Guilin Wen, (2011), “Theoretical prediction and numerical simulation of honeycomb structures with various cell specifications under axial loading,” Int J Mech Mater Des, 7 pp.253~263.
5.Gotoh, M., M. Yamashita, and A. Kawakita, (1996), “Crush behavior of honeycomb structure impacted by drop-hammer and it’s numerical analysis,” Materials Science Research International, 2(4) pp.261~266.
6.Gotoh, M., M. Yamashita, (2005), “Impact behavior of honeycomb structures with various cellspecifications – numerical simulation and experiment,” International Journal of Impact Engineering, 32 pp.618~630.
7.Aktay, L., A.F. Johnson, and B.H. Kroplin, (2008), “Numerical modeling of honeycomb core crush behavior,” Engineering Fracture Mechanics, 75 pp.2616~2630.
8.Wu, Enboa., Wu-Shung Jiang, (1997), “Axial crush of metallic honeycombs,” International Journal of Impact Engineering, 19(5-6) pp.439~459.
9.Baker, W.E., T.C. Togami, J.C. Weydert, (1998), “Static and dynamic properties of high-density metal honeycombs,” International Journal of Impact Engineering, 21(3) pp.149~163.
10.Chawla, A., S. Mukherjee, D. Kumar, T. Nakatani, and M. Ueno, (2003), “Prediction of crushing behaviour of honeycomb structures,” International Journal of Crashworthiness, 8(3) pp.229~235.
11.Goldsmith, W., G.T. Wang, and D. Crane, (1997), “Perforation of cellular sandwich plates,” International Journal of Impact Engineering, 19(5~6) pp.361~379.
12.Santosa, S., and T. Wierzbicki, (1998), “Crash Behavior of Box Columns Filled with Aluminium Honeycomb or Foam,” Computers and Structures, 68 pp.343~367.
13.Hong, Sung-Tae, J. Pan, T. Tyan, and P. Prasad, (2008), “Dynamic crush behaviors of aluminum honeycomb specimens under compression dominant inclined loads,” International Journal of Plasticity, 24 pp.87~117.
14. Santosa, S. and T. Wierzbicki, (1998), “Crash behavior of box columns filled with aluminum honeycomb or foam,” Computers and Structures, 68 pp.343~367.
15. Abdennadher, S.,B.Hou, A.Ono, S. Pattofatto, and H. Zhao, (2011), “Impact behavior of honeycombs under combined shear-compression;Part I: Experiments,” International Journal of Solids and Structures, 48 pp.687~697.
16. A.G. Mamalis, D.E. Manolakos, M.B. Ioannidis, P.K. Kostazos, and D.P. Papapostolou, (2002), “Axial collapse of hybrid square sandwich composite tubular components with corrugated core: numerical modeling,” Composite Structures, 58 pp.571~582.
17. Zhao, H. and G. Gary, (1998), “Crushing Behaviour of Aluminium Honeycomb under Impact Loading,” International Journal of Impact Engineering, 21 pp.827~ 836.
18. Doyoyo, M. and D. Mohr, (2003), “Microstructural Response of Aluminum Honeycomb to Combined Out-of-plane Loading,” Mechanics of Materials, 35 pp. 865~ 876.
19. Ahmed Abbadi, Y. Koutsawa, A. Carmasol, S. Belouettar, and Z. Azari, (2009), “Experimental and numerical characterization of honeycomb sandwich composite panels,” Simulation Modelling Practice and Theory, 17 pp.1533~1547.
20.胡純逢(2009),「薄管元件受軸向衝擊之動態行為研究」,國立成功大學航空太空工程研究所碩士論文。
21. Hexcel Corporation, (1992), Mechanical Properties of Hexcel Honeycomb Materials, TSB 120, Dublin, CA.
22.ASTM D7336/D7336M-12, “Standard Test Method for Static Energy Absorption Properties of Honeycomb Sandwich Core Materials,” ASTM, Philadelphia, PA.
23. Gibson, L. J. and Ashby, M. F. (1997), Cellular Solids: Structure and Properties, 2nd edition, Cambridge University Press, Cambridge.
校內:2019-08-18公開