簡易檢索 / 詳目顯示

研究生: 張育瑄
Chang, Yu-Hsuan
論文名稱: 溶液法成長硫化銅薄膜之氨氣感測性質
Ammonia Sensing Property of Solution Grown CuxS Thin Film
指導教授: 陳引幹
Chen, In-Gann
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 150
中文關鍵詞: 硫化銅氨氣薄膜
外文關鍵詞: Copper sulfide, ammonia, Thin Films
相關次數: 點閱:63下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是於水溶液中將銅片表面或玻璃與矽基板上成長硫化銅薄膜,成長方式可以分為化學浴沉積法(chemical bath deposition)與液相硫化法(solution sulfidation)。
    化學浴沉積法生成之硫化銅薄膜在經過高於300oC的快速退火熱處理後,其結晶相會由covellite相(CuS)轉變為digenite相(Cu1.78S);然而當溫度高於400oC時,試片會有氧化的情形發生。硫化銅薄膜經300oC熱處理後,其表面將變為較粗糙,同時其氨氣感測性質亦呈現較高的靈敏度。
    液相硫化法是將銅片或熱蒸鍍之銅膜浸入硫化鈉水溶液後生成硫化銅。將銅片浸入以濃度皆為1M之硫化鈉與鹽酸配置之硫化液後,可在其表面生成厚度小於100nm、高度可達數μm之硫化銅蜂窩狀結構,此稱為奈米牆(nanowalls),經鑑定後晶相為chalcocite相(Cu2S)。生成機制應為銅片表面晶界處具較快的侵蝕速率,而侵蝕速率較慢的銅晶粒處則與硫離子反應生成硫化銅。熱蒸鍍銅膜在浸入硫化鈉與鹽酸之混合水溶液後,薄膜出現破裂與脫落等情形,若將熱蒸鍍薄膜製作於前段敘述之化學浴沉積的硫化銅上,並進行4小時500oC之熱處理後,以1伏特(V)偏壓於0.1M的硫化鈉水溶液中進行陽極化處理,則可以改善硫化銅薄膜破裂的情形,同時能夠得到奈米牆結構。然而以硫化法製作出之硫化銅奈米牆對氨氣並無感測性質存在,其原因尚需探討。本實驗已成功利用不同製程方式合成x介於1與2之間的CuxS,未來可透過熱處理條件與元件設計來改善其氣體感測靈敏度。

    The copper sulfide thin films formatted on the surface of copper sheets or glasses and silicon (Si) substrates in solution. The methods of growing copper sulfide thin films were chemical bath deposition (CBD) and solution sulfidation.
    After the rapid thermal annealing (RTA) treatment higher than 300oC, the CBD copper sulfide thin film would transfer from covellite phase (CuS) to digenite phase (Cu1.78S). But some oxides would form in the thin film if the heating temperature was above 400oC. After the heat treatment at 300oC, the copper sulfide thin film would not only be rougher in the surface, but improve its ammonia sensitivity.
    The solution sulfidation process was immersed the copper sheet or thermal evaporated copper thin film into the solution contained sodium sulfide (Na2S). After immersed the copper sheet into the 1M sodium sulfide and hydrochloric acid(HCl) mixed solution, some chalcocite(Cu2S) phase honeycomb structures which had smaller than 100nm thickness and several μm height were observed as nanowalls on the surface. The grown mechanism of copper sulfide nanowalls was the different etched rates of grains and grain boundaries at copper sheet surface. Then the unetched region would react with sulfur ions to form the copper sulfide nanowalls.
    Thermal evaporated copper thin films were broken after immersed in the Na2S and HCl mixed solution. The broken would reduce if deposited copper thin films on the CBD CuS layer then anodized the copper thin films in 0.1M Na2S solution with 1 voltage. From this process we also could get nanowall structures copper sulfide thin films, but the ammonia sensitivity didn't appear at those nanowall copper sulfide thin films.
    In this research we get different CuxS(x= 1~2) composition with different grown methods. In the future work, we can improve its ammonia sensitivity by change the annealing parameters or different component design techniques.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 實驗動機與目的 2 第二章 理論基礎與文獻回顧 5 2-1硫化銅 5 2-1-1硫化銅相圖 5 2-1-2硫化銅薄膜 6 2-2 銅表面的硫化 7 2-2-1 液相反應 7 2-2-1-1反應動力學 7 2-2-1-2反應機制 9 2-2-2氣相反應 10 2-2-2-1硫蒸氣與銅的反應 10 2-3化學浴沉積 11 2-4氣體感測器的種類 12 2-4-1觸媒燃燒型氣體感測器 12 2-4-2半導體吸附型氣體感測器 13 2-4-3電化學氣體感測器 13 2-4-4場效電晶體氣體感測器 14 2-4-5光學感測器 15 2-5半導體氣體感測器運作原理 15 2-5-1吸附理論 15 2-5-1-1物理吸附 16 2-5-1-2化學吸附 17 2-5-2蕭基能障 19 2-5-3晶界能障 21 2-5-4影響氣體感測性質的因素 21 2-5-4-1晶粒大小 21 2-5-4-2催化性添加物 22 2-6 硫化銅氨氣感測性質文獻回顧 22 第三章 實驗流程與儀器設備 45 3-1實驗材料 45 3-2實驗流程 46 3-2-1 化學浴沉積硫化銅薄膜 46 3-2-2 在銅片表面生成硫化銅薄膜 47 3-2-3製備具有奈米牆結構的硫化銅薄膜 47 3-3實驗分析儀器 48 3-3-1 X光繞射分析(X-ray Diffraction, XRD) 48 3-3-2 低掠角X光繞射分析(Grazing Incidence Angle X-ray Diffraction, GIAXD) 49 3-3-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 49 3-3-4 原子力顯微鏡(Atomic Force Microscope, AFM) 50 3-3-5 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis, ESCA) 51 3-3-6 分光光譜儀(UV-Visible Spectroscopy, UV-vis) 52 3-3-7 電阻量測與氨氣氣體感測性質分析 52 第四章 結果與討論 62 4-1化學浴沉積硫化銅薄膜 62 4-1-1 薄膜表面結構觀察 62 4-1-2 薄膜結晶相分析 63 4-1-3 薄膜表面鍵結分析 65 4-1-4 光學吸收 68 4-1-5 電阻量測與氨氣感測性質分析 69 4-1-5-1電阻量測 69 4-1-5-2 氨氣感測性質分析 71 4-1-5-3 電阻不穩 72 4-2銅片表面生成硫化銅薄膜 74 4-2-1 銅/硫化亞銅電性分析 76 4-2-2 硫化亞銅奈米牆成長機制分析 79 4-3製備具有奈米牆結構的硫化銅薄膜 82 4-3-1 銅膜熱處理 83 4-3-2 陽極化處理 84 4-3-3 將硫化銅奈米牆成長於硫化銅薄膜上 85 第五章 結論 143 參考文獻 145

    [1] B. Timmer, W. Olthuis and A. van den Berg, Sensors and Actuators B, 107 (2005) 666–677.
    [2] 曾明漢, 材料與社會, 68 (1992) 62-66.
    [3] A. Galdikas, A. Mironas, V. Strazdiene, A. Setkus, I. Ancutiene and V. Janickis, Sensors and Actuators B, 67 (2000) 76–83.
    [4] A.A. Sagade and R. Sharma, Sensors and Actuators B: Chemical, 133 (2008) 135-143.
    [5] R.J. Goble,The Canadian Mineralogist 23 (1985) 61.
    [6] W.G. Mumme, G.J. Sparrow and G.S. Walker, Mineralogical Magazine, 52 (1988) 323.
    [7] T.B. Massalski, Alloy Phase Diagrams, edited by H. Okamoto, P. R. Subramanian, L. Kacprzak (1990) 1469.
    [8] M. Savelli and J. Bougnot, Topics of Applied Physics, 31 (1979) 213.
    [9] E.H. Roseboom Jr., Economic Geology 61 (1966) 641.
    [10] K. Okamoto and S. Kawai, Japanese Journal of Applied Physics, 12 (1973) 1130-1138.
    [11] R.S. Larson, Journal of The Electrochemical Society, 149 2 (2002) B40-B46.
    [12] J.Y. Leong and J.H. Yee, Applied Physics Letter, 35 (1979) 601-602.
    [13] R.J. Mytton, British Journal of Applied Physics, 1 (1968) 721-726.
    [14] E. Vanhoeme, M. Burcelman and L. Anaf, IEEE, (1984) 890-895.
    [15] V.I. Klimov, Physical Review B, 54 (1996) 8087-8094.
    [16] K.V. Yumashev, P.V. Prokoshin, A.M. Malyarevich, V.P. Mikhailov, M.V. Artemyev and V.S. Gurin, Applied Physics B, 64 (1997) 73-78.
    [17] Y. He, W. Kriegseis, J. Blasing, A. Polity, T. Kramer, D. Hasselkamp, B.K. Meyer, M. Hardt and A. Krost, Japanese Journal of Applied Physics, 41 (2002) 4630–4634.
    [18] P.S. Khiew, S. Radiman, N.M. Huang and M.S. Ahamd, Journal of Crystal Growth, 268 (2004) 227–237.
    [19] T. Kuzuya, Y. Tai, S. Yamamuro and K. Sumiyama, Science and Technology of Advanced Materials, 6 (2005) 84–90.
    [20] M. Behboudnia and B. Khanbabaee, Journal of Crystal Growth, 304 (2007) 158–162.
    [21] L. Isac, A. Duta, A. Kriza, S. Manolache and M. Nanu, Thin Solid Films, 515 (2007) 5755– 5758.
    [22] R.S. Mane and C.D. Lokhande, Material Chemistry and Physics, 65 (2000) 1-31.
    [23] M.T.S. Nair and P.K. Nair, Semiconductor Science and Technology, 4 (1989) 191-199.
    [24] P.K. Nair, J. Cardoso, O.G. Daza and M.T.S. Nair, Thin Solid Films, 401 (2001) 243–250.
    [25] M.H.B. Stiddard, Journal of Materials Science, 22 (1987) 1347-1351.
    [26] B. Rezig, S. Duchemin and F. Guastavino, Solar Energy Materials, 6 (1979) 53.
    [27] H.S. Randhawa, R.F. Bunshah, D.G. Brock, B.M. Basol and O.M. Staffsudd, Solar Energy Materials, 6 (1982) 445.
    [28] L. Isac, A. Duta, A. Kriza, S. Manolache and M. Nanu, Thin Solid Films, 515 (2007) 5755–5758.
    [29] S.Y. Wang, W. Wanga and Z.H. Lu, Materials Science and Engineering B103 (2003) 184-188.
    [30] J. Podder, R. Kobayashi and M. Ichimura, Thin Solid Films 472 (2005) 71–75.
    [31] A. Rothwarf and A.M. Barnett, IEEE Transactions on Electron Device, ED.24 (1977) 381-387.
    [32] K.W. BÖER, Physica Status Solidi (a), 40 (1977) 355-384.
    [33] L.C. Burton, Applied Physics Letter, 35 (1979) 780-782.
    [34] J. Wilsin and J. Woods, Journal of Physics D: Applied Physics, 5 (1972) 1700-1711.
    [35] G. Alvarez, J.J. Flores, J.O. Aguilar, O. Go′mez-Daza, C.A. Estrada, M.T.S. Nair and P.K. Nair, Solar Energy 78 (2005) 113–124.
    [36] T. Yamamoto, E. Kubota, A. Taniguchi, S. Dev, K. Tanaka and K. Osakada, Chemistry of Materials 4 (1992) 562-570.
    [37] E.R. Sartori and E.A. Neves, Analytical Letters, 39 (2006) 927–935.
    [38] T. Sakamoto, H. Sunamura, and H. Kawaura, Applied Physics Letter, 82 (2003) 3032-3034.
    [39] M. Leon and F. Arjona, Journal of Physics D: Applied Physics, 19 (1986) 1529-1534.
    [40] D. Kuchar, T. Fukuta, M.S. Onyango and H. Matsuda, Journal of Hazardous Materials B138 (2006) 86–94.
    [41] B.W. Mountain and T.M. Seward, Geochimica et Cosmochimica Acta, 63 (1999) 11–29.
    [42] G.O. Neto, S.H.P. Serrano and E.F.A. Neves, Analytical Letters, 20 (1987) 1363-1377.
    [43] J. Llopis, J. M. Gamboa, L. Arizmendi and F. Alonso, Journal of the Electrochemical Society, 109 (1962) 368-377.
    [44] O.L. Bottecchia, Journal of the Brazilian Chemical Society, 9 (1998) 515-520.
    [45] 蘇明德, 科學發展, 413期, 2007年5月, 58-65.
    [46] H. Tazaki and S. Kuwabara, Journal of Science of the Hiroshima University A, 1950, 251-255.
    [47] R. Blachnik and A. Muller, Thermochimica Acta, 361 (2000) 31-52.
    [48] R. Blachnik and A. Muller, Thermochimica Acta, 366 (2001) 47-59.
    [49] X. Feng, Y. Li, H. Liu, Y. Li, Sh. Cui, N. Wang, L. Jiang, X. Liu and M. Yuan, Nanotechnology 18 (2007) 145706- 145711.
    [50] J.M. Dona and J. Herrero, Journal of the Electrochemical Society, 144 11 (1997) 4081-4091.
    [51] K.W. Cheng, C.Y. Chang, C.M. Huang, and W.H Chiang, Journal of Chemical Physics, unpublished.
    [52] I. Grozdanov, M. Najdoski, Journal of Solid State Chemistry, 114 (1995) 469-475.
    [53] R.S. Mane, C.D. Lokhande, Materials Chemistry and Physics, 65 (2000) 1-31.
    [54] C.D. Lokhande, Materials Chemistry and Physics, 27 (1991) 1-43.
    [55] 王毓國、陳錦山、駱榮富,2007中華民國陶業研究學會年會論文集,PP 26.
    [56] 石東生、高崇洋、湯大同、張所鋐, 奈米碳管毒性氣體偵測器研發-NO2,NH3, 勞工安全衛生研究報告 (2004) IOSH93-SH12.
    [57] 曾明漢, 材料與社會, 68 (1992) 57-61.
    [58] 陳一誠, 材料與社會, 68 (1992) 52-66.
    [59] K. Zakrzewska, Thin Solid Films, 391 (2001) 229-238.
    [60] X. Wang, N. Miura and N. Yamazoe, Sensors and Actuators B, 66 (2000) 74–76.
    [61] C.N. Xu, N.Miura, Y. Ishida, K. Matsuda and N. Yamazoe, Sensors and Actuators B, 65 (2000) 163–165.
    [62] W. Gopel and K.D. Schierbaum, Sensors and Actuators B, 26 (1995) 1-12.
    [63] Y.D. Wang, X.H. Wu, Q. Su, Y.F. Li and Z.L. Zhou, Solid-State Electronics, 45 (2001) 347-350.
    [64] 邱秋燕、周澤川, 化工, 40 (1993) 120-133.
    [65] 陶德和, 科儀新知, 15 (1993) 64-69.
    [66] I. Lghdesmgki, A. Lewenstam and A. Ivaska, Talanta, 43 (1996) 125-134.
    [67] A.L. Kukla, Y.M. Shirshov and S.A. Piletsky, Sensors and Actuators B, 37 (1996) 135-140.
    [68] I. Lahdesmaki, W.W. Kubiak, A. Lewenstam and A. Ivaska, Talanta, 52 (2000) 269–275.
    [69] V.V. Chabukswar, S. Pethkar and A.A. Athawale, Sensors and Actuators B, 77 (2001) 657-663.
    [70] M.C. Liu, C.L. Dai, C.H. Chan and C.C. Wu, Sensors, 9 (2009) 869-880.
    [71] 顧志鴻, 材料與社會, 68 (1992) 76-77.
    [72] 馬志欽, 科學月刊, 30 (1999) 210-214.
    [73] I. Lundström, A. Spetz, F. Winquist, U. Ackelid and H. Sundgren, Sensors and Actuators B, 1 (1990) 15-20.
    [74] A.I. Vogel, Vogel's Qualitative Inorganic Analysis, Longman Scientific & Technical (1987).
    [75] T. Tsuboi, Y. Hirano, Y. Shibata and S. Motomizu, Analytical Science, 18 (2002) 1141-1144.
    [76] G.H. Mount, B. Rumburg, J. Havig, B. Lamb, H. Westberg, D. Yonge, Kristen Johnson and R. Kincaid, Atmospheric Environment, 36 (2002) 1799–1810.
    [77] S.R. Morrison, The chemical physics of surfaces, Plenum Press (1990) 252-255.
    [78] H. Windischmann and P. Mark, Journal of the Electrochemical Society, 126 4 (1979) 627-633.
    [79] D. Kohl, Sensors and Actuators, 18 (1989) 71-113.
    [80] J.F. Mcaleer, P.T. Moseley, J.O.W. Norris and D.E. Williams, Journal of the Chemical Society, Faraday Transactions , 83 4 (1987) 1323-1346.
    [81] D.A. Neamen, Semiconductor physics and devices :basic principles, McGraw-Hill (1992) 325.
    [82] B.G. Streetman, Solid state electronic devices, Prentice Hall (1995) 185.
    [83] N. Barsan, D. Koziej and U. Weimar, Sensors and Actuators B 121 (2007) 18–35.
    [84] P.B. Weisz, The Journal of Chemical Physics 21 (1953) 1531-1538
    [85] P.T. Moseley, Measurement Science and Technology, 8 (1997) 223–237.
    [86] 林鴻明、曾世杰, 工業材料, 157 (2000) 163-169.
    [87] A. Setkus, A. Galdikas, A. Mironas, I. Simkiene, I. Ancutiene, V. Janickis, S. Kaciulis, G. Mattogno and G.M. Ingo, Thin Solid Films, 391 (2001) 275-281.
    [88] A. Setkus, A. Galdikas, A. Mironas, I. Simkiene, I. Ancutiene, V. Janickis, S. Kaciulis, G. Mattogno and G.M. Ingo, Sensors and Actuators B, 78 (2001) 208-215.
    [89] A.A. Sagade, R. Sharma and I. Sulaniya, Journal of Applied Physics, 105 (2009) 043701.
    [90] X.L. Yu, Y. Wang, H.L.W. Chan and C.B. Cao, Microporous and Mesoporous Materials, 118 (2009) 423–426.
    [91] W. Zhang, Z. Chen and Z. Yang, Physical Chemistry Chemical Physics, 11 (2009) 6263-6268.
    [92] J. Cardoso, O. GomezDaza, L. Ixtlilco, M. T. S. Nair and P. K. Nair, Semiconductor Science and Technology 16 (2001) 123-127.
    [93] S. W. Kim and Y. Nishi, IEEE, Non-Volatile Memory Technology Symposium, NVMTS '07 (2007) 76-78.
    [94] K. Schroder, Semiconductor Material and Device Characterization, Wiley Interscience, 1998
    [95] P. Pramanik, M.A. Akhte and P.K. Basu, Journal of Materials Science Letters, 6 (1987) 1277-1279.
    [96] L. Reijnen, B. Meester, A. Goossens, and J. Schoonmank, Chemistry of Materials, 17 (2005) 2724–2728.
    [97] M.T.S. Nair, L. Guerrero and P.K. Nair, Semiconductor Science and Technology, 13 (1998) 1164–1169.
    [98] Y.T. Nien and I.G. Chen, Journal of Alloys and Compounds, 471 (2009) 553-556.
    [99] D.C. Frost, A. Ishitani and C.A. McDowell, Molecular Physics, 24 (1972) 861-877.
    [100] C.I. Pearce , R.A.D. Pattrick, D.J. Vaughan, C.M.B. Henderson and G. van der Laan, Geochimica et Cosmochimica Acta 70 (2006) 4635–4642.
    [101] J.F. Moulder, J. Chastain and C.R. King, Handbook of x-ray photoelectron spectroscopy :a reference book of standard spectra for identification and interpretation of XPS data, Minn. :Physical Electronics (1995) 60.
    [102] S.W. Goh, A.N. Buckley and R.N. Lamb, Minerals Engineering 19 (2006) 204–208.
    [103] C. Cruz-Vazquez, M. Inoue, M.B. Inoue, R. Bernal and F.J. Espinoza-Beltran, Thin Solid Films 373 (2000) 1-5.
    [104] G. Mao, W. Dong, D.G. Kurth and H. Mohwald, Nano Letters, 4 (2004) 249-252.
    [105] I. Nakai, M. Izawa, Y. Sugitani, Y, Niwa and K. Nagashima, Mineralogical Journal, 8 (1976) 135-138.
    [106] T. Kuzuya, K. Itoh, M. Ichidate, T. Wakamatsu, Y. Fukunaka and K. Sumiyama, Electrochimica Acta, 53 (2007) 213–217.
    [107] C. Jiang, W. Zhang, G. Zou, L. Xu, W. Yu and Y. Qian, Materials Letters, 59 (2005) 1008-1011.
    [108] T. Kuzuya, K. Itoh and K. Sumiyama, Journal of Colloid and Interface Science, 319 (2008) 565–571.
    [109] J. Shan, P. Pulkkinen, U. Vainio, J. Maijala, J. Merta, H. Jiang, R. Serimaa, E. Kauppinen and H. Tenhu, Journal of Materials Chemistry, 18 (2008) 3200-3208.
    [110] W. Liang and M.H. Whangbo, Solid State Communications, 58 (1993) 405-408.
    [111] R.A.D. Pattrick, J.F.W. Mosselmans, J.M. Charnock, K.E.R. England, G.R. Helz, C.D. Gaener and D.J. Vaughan, Geochimica et Cosmochimica Acta, 61 (1997) 2023-2036.
    [112] M. Kundu, T. Hasegawa, K. Terabe and M. Aono, Journal of Applied Physics, 103 (2008) 073523.
    [113] I. Grozdanov, C.K. Barlingay, S.K. Dey, M. Ristov and M. Najdoski, Thin Solid Film, 250 (1994) 67-71.
    [114] I. Grozdanov, Semiconductor Science and Technology, 9 (1994) 1234-1241.
    [115] 粘永堂,“摻雜過渡元素之硫屬螢光粉的合成、微結構與發光特性研究”,國立成功大學材料科學及工程學系博士論文,民國96年
    [116] Y.I. Vertsimakha, Molecular Crystals and Liquid Crystals, 335 (2001) 275-288.
    [117] G. Liu, T. Schulmeyer J. Brotz, A. Klein and W. Jaegermann, Thin Solid Films, 431–432 (2003) 477–482.
    [118] H. Meixner and U. Lampe, Sensors and Actuators B, 33 (1996) 198-202.
    [119] Y.M. Zhao and Y.Q. Zhu, Sensors and Actuators B, 137 (2009) 27–31.
    [120] S. Ashraf, R. Binions, C.S. Blackman and I.P. Parkin, Polyhedron, 26 (2007) 1493–149.
    [121] Y. Lim, Y.W. Ok, S.J. Tark, Y. Kang, D. Kim, Current Applied Physics, 9 (2009) 890–893.
    [122] M.A. Greenwood, Photonics, (2007) 42-50.
    [123] Y. Wang, Y.B.K. Reddy and H. Gongz, Journal of The Electrochemical Society, 156 (2009) H157-H160.
    [124] W.D. Callister Jr., Material Science and Engineering an Introduction, Wiley (2003) 83-84.
    [125] M.D. Kriese, N.R. Moody and W.W. Gerberich, Acta Materialia, 46 (1998) 6623-6630.

    下載圖示 校內:2014-02-08公開
    校外:2014-02-08公開
    QR CODE