簡易檢索 / 詳目顯示

研究生: 吳柏毅
Wu, Po-I
論文名稱: 具微形天線鈮酸鋰馬氏調制器與電磁場感測器
The Intergraded Electromagnetic Field Sensor Combining a Micro Antenna with a LiNbO3 Mach-Zehnder Waveguide Modulator
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 80
中文關鍵詞: 波導鈮酸鋰馬氏調制器天線
外文關鍵詞: electrode, antenna, Mach-Zehnder modulator
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用Z-Cut 鈮酸鋰以鈦擴散製作波導,並以馬氏調制器的形式來製作電磁場感測器,當入射雷射波長1550nm,輸入功率為10mW,其半波電壓為10V,切換消光比為23.8dB。將一微型天線直接製作於調制器上,使整個元件於100MHz與2GHz分別有最小電場感度2.85×10-3V/m及8.91×10-4V/m,並調整馬氏調制器與微型天線間的阻抗匹配,經由天線因子量測得知,操作頻寬可由100MHz到1.8GHz,包含了大部份通訊上所適用的頻段,且於2GHz有一共振響應。

    The amplitude modulator of an electromagnetic field sensor using Ti diffusion process on Z-cut LiNbO3 and optical fiber link is improved by a Mach-Zehnder interferometer, whose Vπ is about 10V at 1550nm wavelength and the on-off extinction ratio is 23.8dB. In this thesis, the plane antenna was directly applied to suppress the volume and strengthen the connection between each part of the device for the purpose of optoelectronic intergraded circuit. After being ground and polished well, the device was coupled with fiber directly. Then the characteristic of the fabricated sensor were analyzed. It was found that the resulting frequency response is almost flat from 100MHz to 1.8GHz, and the resonant frequency is at 2GHz. The minimum detectable electric field strengths are 2.85×10-3V/m at 100MHz and 8.91×10-4V/m at 2GHz. Therefore, the optical electric field sensor made by LiNbO3 could become more valuable in application.

    Contents Abstract (Chinese) / i Abstract (English) / ii Acknowledge/ iii Contents/ v Figure and Table /Captions / vii Chapter1 Introduction / 1 Chapter2 Theory 2.1 Electro-optical effect of LiNbO3/ 4 2.2 Ti diffusion for waveguide/ 7 2.3 Mach-Zehnder modulator/ 11 2.4 Traveling-wave electrode/ 13 2.5 Folded monopole 15 Chapter3 Device Process 3.1 Light waveguide/ 17 3.2 Buffer layer / 18 3.3 Thick electrode / 19 3.4 Antenna / 20 3.5 Package / 21 Chapter4 Measurement Result 4.1 Mach-Zehnder modulator / 25 4.2 Antenna / 28 4.3 Field sensor / 29 Chapter5Conclusion / 33 Reference / 36

    Reference
    [1] P. S. Cross, R. A. Baumgatner, and B. H. Kolner, “Microwave integrated Optical modulator,” Appl. Phys. Lett., vol. 44, pp. 486-489, (1984).
    [2] R. A. Beaker, “Traveling-wave electro-optic modulator with maximum bandwidth-length product,” Appl. Phys. Lett., vol. 43, pp. 998-1000, (1984).
    [3] A. Yariv, P. Yeh, Optical waves in crystals, John Wiley&Sons, INC, New York (1983)
    [4] 李俊奇“雙重擴散式波導管之研究”中央大學博士論文 (1994).
    [5] 白富成 “鈮酸鋰高速調制器之製作與封裝”中央大學碩士論文 (1993).
    [6] S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refraction index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Tech., vol. 5, pp. 700-703 (1987).
    [7] K. Kobota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide” IEEE J. Quantum Electron, vol. 16, pp. 754-756, 1980.
    [8] G. E. Betts, and W. S. C. Chang, “Crossing-channel waveguide electrooptic modulators,” IEEE J. Quantum Electron, vol. 22, pp. 1027-1029, 1986.
    [9] M. N. Armenise, ”Fabrication techniques of lithum niobate waveguide, ”IEEE Proc., vol.135, pp. 85-87, 1988
    [10] F. Auracher, “Design tradeoffs for high-speed directional coupler modulators with Δβ-reversal in LiNbO3,” J. Opt. Commun, vol. 5, pp. 2-4, 1984.
    [11] M. Masuda, and J. Koyama, “Effects of a buffer layer on TM modes in a metal-clad optical waveguide using Ti-diffused LiNbO3 C-plate,” Appl. Opt., vol.16, pp. 2294-2296, 1977.
    [12] K. Sreenivas, T. S. Rao, A. Mansingh, and S. Chandra, “Preparation and characterization of RF Sputtered indium tin oxide films,” J. Appl. Phys., vol. 57, p. 384, 1985.
    [13] 黃振庭”緩衝層影響鈮酸鋰光波導元件傳播損耗之研究” 中央大學碩士論文(1997).
    [14] E. Voges, and A. Neyer, “Integrated-Optic devices on LiNbO3 for optical communication,” J. Lightwave Tech., vol.5, p. 1229, 1987.
    [15] H. Nagata, and N. Mitsugi, “Mechanical Reliability of LiNbO3 optical modulators hermetically sealed in stainless steel packages,” Opt. Fiber Technol, vol. 2, pp. 216-224 (1996).
    [16] T. Meier, C. Kostrzewa, K. Petermann, B. Schuppert, “Intergrated optical E-field probes with segmented modulator electrodes,” J. Lightwave Technology, pp. 1497-1503 (1994).

    [17] T. Miyakawa, Y. Tokano Y. Sawada, and S. Kamatani, “Development of a optical electric field sensor in the GHz range,” Proc EMC Zurich’99, Zurich, Switzerland, pp. 551-554 (1999).
    [18] N. Kuwabara, K. Tajima, T. Tanaka, and R. Kobayaashi, “Development and analysis of electric field sensor using optical modulator,” IEEE Trans Electromagnetic Compat 34, pp. 391-395 (1992)
    [19] Y. Tokano, H. Kobayashi, T. Miyakawa, Y. Houjyo, “A gigahertz micro optical electric field sensor,” 14th Int Zurich Symp on Electromagnetic Compatibility, No.25E4, pp. 127-130 (2001).
    [20] M. Takahashi, K. Nishikawam, K. I. Arai, R. Sato, “An optical wave guide sensor with a loop antenna element,” Int Symp EMC Europe, No. PD16, pp. 635-638 (2002).
    [21] S. H. Choi, J. K. Park, S. K. Kim, and J. H. Park, “A new ultra-wildband antenna for UWB applications,” Microwave and optical technology letters, Vol. 40, No. 5, pp. 399-401 (2004).
    [22] M. Forman and Z. Popovic,” A K-Band ground-backed CPW balanced and integrated antenna feed,” European Microwave conference No. CD12, pp. 411-413 (2000).
    [23] C. C. Chen, B. F. Hung, A. Chin, and S. P. McAlister,” High performance CPW and microstrip ring antenna on silicon substrates, ” Microwave and optical technology letters, Vol. 42, No. 6, pp. 511-514 (2004).

    [24] S. Takahashi, T. Miyakawa, K. Nishikawa, K. Arari, “Near magneticfield distribution measurement by the loop coil optical waveguide probe,” IEICE Society Conf, No. B-4-73, pp. 440-443 (2003).
    [25] C. Carobbi, L. Millanta, L. Chiosi, “ The high-frequency behavior of the shield in the magnetic field probes,” IEEE Int Sym EMC, pp. 35-40 (2000).
    [26] T. Miyakawa, K. Nishikawa, and K. Nishida, “An optical-waveguide-type Magnetic field probe with a loop antenna element,” Electronics and Communications in Japan, Part 2, Vol. 88, No. 4, pp. 18-26 (2005).
    [27] Z. Fuween, C. Fushen, and Q. Kun, “An integrated electro-optic E-field sensor with segmented electrodes,” Microwave and optical technology letters, Vol. 40, No. 4, pp. 302-305 (2004).
    [28] T. Mitakawa, K. Nishikawa, K. Arai, and R. Sato, “An optical waveguide sensor with a loop antenna element,” Int Symp EMC Europe, No. PD16, pp. 635-638 (2002).
    [29] R. Kobayashi, K. Tajima, and N. Kuwabara, “Optical bias angle control method for electric field sensor using Mach-Zehnder interferometer,” Electronics and Communications in Japan, Part 1, Vol. 83, No. 8, pp. 53-60 (2000).

    下載圖示 校內:2007-08-25公開
    校外:2007-08-25公開
    QR CODE