| 研究生: |
郭承儒 Kuo, Cheng-Ju |
|---|---|
| 論文名稱: |
全基因體學鑑定出血性大腸桿菌於感染線蟲所需毒理因子之相關基因 Genome-Wide Identification of Enterohemorrhagic E. coli Virulence-Related Genes in Caenorhabditis elegans |
| 指導教授: |
陳昌熙
Chen, Chang-Shi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 出血性大腸桿菌 、RfaD/GmhD/WaaD 、脂多醣 、抗微生物胜肽 、腸道先天免疫 、秀麗隱桿線蟲 |
| 外文關鍵詞: | enterohemorrhagic Escherichia coli (EHEC), RfaD/GmhD/WaaD, lipopolysaccharide (LPS), antimicrobial peptides (AMPs), intestinal innate immunity, Caenorhabditis elegans |
| 相關次數: | 點閱:171 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
出血性大腸桿菌 O157:H7 是藉由食物傳播且難以治療的致病菌,會在全世界造成
人類嚴重疾病。現今,對於出血性大腸桿菌並無專一性療法,使用傳統抗生素的治療方法極具爭議與限制。因此,迫切需要研發對出血性大腸桿菌於控制和治療之新穎方法。脂多醣,其位於出血性大腸桿菌細胞外膜外層之醣脂質。藉由全基因體篩選,我們發現參與出血性大腸桿菌脂多醣核心合成的基因,rfaD,在活體實驗中對出血性大腸桿菌之致病力扮演極重要角色。破壞腸道出血性大腸桿菌脂多醣合成基因rfaD 後,除使出血性大腸桿菌對線蟲造成減毒外,亦減少其對線蟲和小鼠寄殖於腸道之能力,且出血性大腸桿菌需要rfaD 基因來抵禦抗微生物胜肽和宿主腸道之免疫系統。值得注意的是,破壞rfaD 基因不會影響到出血性大腸桿菌的生長,因此以rfaD 基因作為治療標的,並不會使出血性大腸桿菌產生抗藥性。我們於活體實驗中之結果顯示,破壞出血性大腸桿菌rfaD 基因後,細菌對宿主腸道先天免疫系統極具敏感性。這暗示了或許以RfaD 蛋白或是脂多醣核心合成路徑之蛋白為標的,可提供治療出血性大腸桿菌感染非抗生素且新穎之療法。
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is one of the most challenging foodborne pathogens causing severe diseases in humans worldwide. Currently, there is no specific treatment available for EHEC infection and the use of conventional antibiotics is contraindicated. Therefore, identification of potential therapeutic targets and development of effective measures to control and treat EHEC infection are needed. Lipopolysaccharides (LPS) are surface glycolipids found on the outer membrane of gram-negative bacteria, including EHEC. We unveiled that the EHEC rfaD gene that functions in the biosynthesis of the LPS core plays important roles in pathogenesis in vivo through an unbiased genome-wide screening. Disruption of the EHEC rfaD gene confers attenuated toxicity in C. elegans and less bacterial colonization in C. elegans and mouse models. Moreover, the rfaD gene is also required for EHEC defense against antimicrobial peptides and host intestinal immunity. It is worth noting that rfaD mutation did not interfere with the growth kinetics when compared to the wild-type EHEC cells. Targeting rfaD as a therapeutic target does not confer resistance of EHEC to antibiotic. Taken together, we demonstrated that mutations of the EHEC rfaD gene confer hypersusceptibility to host intestinal innate immunity in vivo, and suggest that targeting the RfaD or the core LPS synthesis pathway may provide novel non-antibiotic regimens for EHEC infection.
1 Pennington, H. Escherichia coli O157. The Lancet 376, 1428-1435 (2010).
2 Pacheco, A. R. & Sperandio, V. Shiga toxin in enterohemorrhagic E.coli: regulation and novel anti-virulence strategies. Front Cell Infect Microbiol 2, 81, doi:10.3389/fcimb.2012.00081 (2012).
3 Freedman, S. B. et al. Shiga Toxin-Producing Escherichia coli Infection, Antibiotics, and Risk of Developing Hemolytic Uremic Syndrome: A Meta-analysis. Clin Infect Dis 62, 1251-1258, doi:10.1093/cid/ciw099 (2016).
4 Nguyen, Y. & Sperandio, V. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2, 90, doi:10.3389/fcimb.2012.00090 (2012).
5 Raetz, C. R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635-700, doi:10.1146/annurev.biochem.71.110601.135414 (2002).
6 Chang, P. C., Wang, C. J., You, C. K. & Kao, M. C. Effects of a HP0859 (rfaD) knockout mutation on lipopolysaccharide structure of Helicobacter pylori 26695 and the bacterial adhesion on AGS cells. Biochemical and biophysical research communications 405, 497-502 (2011).
7 Valvano, M. A., Messner, P. & Kosma. Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148, 1979-1989 (2002).
8 VERNON L. TESH et al. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infection and immunity 61, 3392–3402 (1993).
9 Sheoran, A. S. et al. Human antibody against shiga toxin 2 administered to piglets after the onset of diarrhea due to Escherichia coli O157:H7 prevents fatal systemic complications. Infection and immunity 73, 4607-4613 (2005).
10 Glen D. Armstrong et al. Human Serum Amyloid P Component Protects against Escherichia coli O157:H7 Shiga Toxin 2 In Vivo:Therapeutic Implications for Hemolytic-Uremic Syndrome. The Journal of Infectious Diseases 193, 1120-1124 (2006).
11 Bentancor, L. V. et al. A DNA vaccine encoding the enterohemorragic Escherichia coli Shiga-like toxin 2 A2 and B subunits confers protective immunity to Shiga toxin challenge in the murine model. Clinical and vaccine immunology : CVI 16, 712-718 (2009).
12 Sauter, K. A. et al. Mouse model of hemolytic-uremic syndrome caused by endotoxin-free Shiga toxin 2 (Stx2) and protection from lethal outcome by anti-Stx2 antibody. Infection and immunity 76, 4469-4478 (2008).
13 Kenney, S. J., Anderson, G. L., Williams, P. L., Millner, P. D. & Beuchat, L. R. Persistence of Escherichia coli O157:H7, Salmonella Newport, and Salmonella Poona in the gut of a free-living nematode, Caenorhabditis elegans, and transmission to progeny and uninfected nematodes. Int J Food Microbiol 101, 227-236, doi:10.1016/j.ijfoodmicro.2004.11.043 (2005).
14 Anderson, G. L., Kenney, S. J., Millner, P. D., Beuchat, L. R. & Williams, P. L. Shedding of foodborne pathogens by Caenorhabditis elegans in compost-amended and unamended soil. Food Microbiol 23, 146-153, doi:10.1016/j.fm.2005.01.018 (2006).
15 Chou, T. C. et al. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cell Microbiol 15, 82-97, doi:10.1111/cmi.12030 (2013).
16 Irazoqui, J. E., Urbach, J. M. & Ausubel, F. M. Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nature reviews. Immunology 10, 47-58 (2010).
17 McGhee, J. D. The C. elegans intestine. WormBook, 1-36, doi:10.1895/wormbook.1.133.1 (2007).
18 Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640-6645, doi:10.1073/pnas.120163297 (2000).
19 Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897-917 (1993).
20 Sato, M. et al. Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Mol Biol Cell 22, 2579-2587, doi:10.1091/mbc.E11-04-0279 (2011).
21 Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).
22 Karsi, A. & Lawrence, M. L. Broad host range fluorescence and bioluminescence expression vectors for Gram-negative bacteria. Plasmid 57, 286-295 (2007).
23 Valdivia, R. H. & Falkow, S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol Microbiol 22, 367-378 (1996).
24 Jun X. Yan et al. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21, 3666-3672 (2002).
25 MacQueen, A. J. et al. ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Mol Biol Cell 16, 3247-3259, doi:10.1091/mbc.E04-12-1061 (2005).
26 Wang, C. Y. et al. Prc contributes to Escherichia coli evasion of classical complement-mediated serum killing. Infection and immunity 80, 3399-3409 (2012).
27 Rhee, K. J. et al. Determination of spatial and temporal colonization of enteropathogenic E. coli and enterohemorrhagic E. coli in mice using bioluminescent in vivo imaging. Gut microbes 2, 34-41 (2011).
28 A. GIACOMETTI et al. In Vitro Susceptibility Tests for Cationic Peptides: Comparison of Broth Microdilution Methods for Bacteria That Grow Aerobically. antimicrobial agents and chemotherapy 44, 1694-1696 (2000).
29 Thwaite, J. E., Hibbs, S., Titball, R. W. & Atkins, T. P. Proteolytic degradation of human antimicrobial peptide LL-37 by Bacillus anthracis may contribute to virulence. Antimicrob Agents Chemother 50, 2316-2322 (2006).
30 Wiegand, I., Hilpert, K. & Hancock, R. E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3, 163-175, doi:10.1038/nprot.2007.521 (2008).
31 Feinbaum, R. L. et al. Genome-wide identification of Pseudomonas aeruginosa virulence-related genes using a Caenorhabditis elegans infection model. PLoS Pathog 8, e1002813, doi:10.1371/journal.ppat.1002813 (2012).
32 Simonsen, K. T. et al. A role for the RNA chaperone Hfq in controlling adherent-invasive Escherichia coli colonization and virulence. PLoS One 6, e16387, doi:10.1371/journal.pone.0016387 (2011).
33 Bojer, M. S., Jakobsen, H., Struve, C., Krogfelt, K. A. & Lobner-Olesen, A. Lack of the RNA chaperone Hfq attenuates pathogenicity of several Escherichia coli pathotypes towards Caenorhabditis elegans. Microbes Infect 14, 1034-1039, doi:10.1016/j.micinf.2012.06.002 (2012).
34 Miyashita, A. et al. Lipopolysaccharide O-antigen of enterohemorrhagic Escherichia coli O157:H7 is required for killing both insects and mammals. FEMS Microbiol Lett 333, 59-68, doi:10.1111/j.1574-6968.2012.02599.x (2012).
35 Darby, C. Interactions with microbial pathogens. WormBook (2005).
36 Mohawk, K. L. & O'Brien, A. D. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection. Journal of biomedicine & biotechnology 2011, 258185 (2011).
37 M. M. Binns, D. L. D. K. G. H. Cloned fragments of the plasmid CoIV, I-K94 specifying virulence and serum resistance. Nature 279 (1979).
38 MATTHEW M. BINNS, J. M., AND R. P. LEVINE. Further Characterization of Complement Resistance Conferred on Escherichia coli by Plasmid Genes traT of R100 and iss of ColV, I-K94. Infection and immunity 35 (1982).
39 Lathem, W. W., Bergsbaken, T. & Welch, R. A. Potentiation of C1 esterase inhibitor by StcE, a metalloprotease secreted by Escherichia coli O157:H7. The Journal of experimental medicine 199, 1077-1087 (2004).
40 Bravo, D. et al. Growth-phase regulation of lipopolysaccharide O-antigen chain length influences serum resistance in serovars of Salmonella. Journal of medical microbiology 57, 938-946 (2008).
41 Bahar, A. A. & Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel) 6, 1543-1575 (2013).
42 Rosenfeld, Y. & Shai, Y. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochimica et biophysica acta 1758, 1513-1522 (2006).
43 Megan M. Mahoney, A. Y. L., Donna J. Brezinski-Caliguri, Kenneth M. Huttner. Molecular analysis of the sheep cathelin family reveals a novel antimicrobial peptide. FEBS letters 377 (1995).
44 Vandamme, D., Landuyt, B., Luyten, W. & Schoofs, L. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cellular immunology 280, 22-35 (2012).
45 Wang, G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 7, 545-594 (2014).
46 Sperandio, V., Torres, A. G. & Kaper, J. B. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43, 809-821 (2002).
47 Reading, N. C. et al. A novel two-component signaling system that activates transcription of an enterohemorrhagic Escherichia coli effector involved in remodeling of host actin. J Bacteriol 189, 2468-2476, doi:10.1128/JB.01848-06 (2007).
48 Njoroge, J. & Sperandio, V. Enterohemorrhagic Escherichia coli Virulence Regulation by Two Bacterial Adrenergic Kinases, QseC and QseE. Infection and Immunity 80, 688-703, doi:10.1128/iai.05921-11 (2011).
49 Hughes, D. T., Clarke, M. B., Yamamoto, K., Rasko, D. A. & Sperandio, V. The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC). PLoS Pathog 5, e1000553, doi:10.1371/journal.ppat.1000553 (2009).
50 Kendall, M. M., Gruber, C. C., Rasko, D. A., Hughes, D. T. & Sperandio, V. Hfq Virulence Regulation in Enterohemorrhagic Escherichia coli O157:H7 Strain 86-24. Journal of Bacteriology 193, 6843-6851, doi:10.1128/jb.06141-11 (2011).
51 Njoroge, J. W., Nguyen, Y., Curtis, M. M., Moreira, C. G. & Sperandio, V. Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli. MBio 3, e00280-00212, doi:10.1128/mBio.00280-12 (2012).
52 Njoroge, J. W., Gruber, C. & Sperandio, V. The interacting Cra and KdpE regulators are involved in the expression of multiple virulence factors in enterohemorrhagic Escherichia coli. J Bacteriol 195, 2499-2508, doi:10.1128/JB.02252-12 (2013).
53 Kuo, C. J. et al. Mutation of the Enterohemorrhagic Escherichia coli Core LPS Biosynthesis Enzyme RfaD Confers Hypersusceptibility to Host Intestinal Innate Immunity In vivo. Front Cell Infect Microbiol 6, 82, doi:10.3389/fcimb.2016.00082 (2016).
54 Alegado, R. A., Chin, C. Y., Monack, D. M. & Tan, M. W. The two-component sensor kinase KdpD is required for Salmonella typhimurium colonization of Caenorhabditis elegans and survival in macrophages. Cell Microbiol 13, 1618-1637, doi:10.1111/j.1462-5822.2011.01645.x (2011).
55 Pacheco, A. R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113-117, doi:10.1038/nature11623 (2012).
56 Belunis, C. J., Clementz, T., Carty, S. M. & Raetz, C. R. Inhibition of lipopolysaccharide biosynthesis and cell growth following inactivation of the kdtA gene in Escherichia coli. J Biol Chem 270, 27646-27652 (1995).
57 Raetz, C. R. et al. Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. Journal of lipid research 47, 1097-1111 (2006).
58 Eun-Young Kim, H. Y. S., Joo-Young Kim, Dong-Gun Kim, Yong-Min Choi, Hyuk-Kwon Kwon, Dong-Kwon Rhee, You-Sun Kim, Sangdun Choi. ATF3 Plays a Key Role in Kdo2-Lipid A-Induced TLR4-Dependent Gene Expression via NF-kB Activation. PLos one 5, doi:10.1371/journal.pone.0014181.g001 (2010).
59 Sims, K. et al. Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. The Journal of biological chemistry 285, 38568-38579 (2010).
60 Wang, J., Ma, W., Wang, Z., Li, Y. & Wang, X. Construction and characterization of an Escherichia coli mutant producing Kdo(2)-lipid A. Marine drugs 12, 1495-1511, doi:10.3390/md12031495 (2014).
61 Pukkila-Worley, R. & Ausubel, F. M. Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Current opinion in immunology 24, 3-9 (2012).
62 Nakatsuji, T. & Gallo, R. L. Antimicrobial peptides: old molecules with new ideas. The Journal of investigative dermatology 132, 887-895 (2012).
63 Iimura, M. et al. Cathelicidin Mediates Innate Intestinal Defense against Colonization with Epithelial Adherent Bacterial Pathogens. The Journal of Immunology 174, 4901-4907 (2005).
64 Chromek, M., Arvidsson, I. & Karpman, D. The antimicrobial peptide cathelicidin protects mice from Escherichia coli O157:H7-mediated disease. PLos one 7, e46476 (2012).
65 Jenny-Lee Thomassin, John R. Brannon, Julienne Kaiser, Samantha Gruenheid & Moual, H. L. Enterohemorrhagic and enteropathogenic Escherichia coli evolved different strategies to resist antimicrobial peptides. Gut microbes 3, 556-561 (2012).
66 Ho, T. D. & Waldor, M. K. Enterohemorrhagic Escherichia coli O157:H7 gal mutants are sensitive to bacteriophage P1 and defective in intestinal colonization. Infect Immun 75, 1661-1666, doi:10.1128/IAI.01342-06 (2007).
67 Sheng, H., Lim, J. Y., Watkins, M. K., Minnich, S. A. & Hovde, C. J. Characterization of an Escherichia coli O157:H7 O-antigen deletion mutant and effect of the deletion on bacterial persistence in the mouse intestine and colonization at the bovine terminal rectal mucosa. Appl Environ Microbiol 74, 5015-5022, doi:10.1128/AEM.00743-08 (2008).
68 Youn, M. et al. Escherichia coli O157:H7 LPS O-side chains and pO157 are required for killing Caenorhabditis elegans. Biochem Biophys Res Commun 436, 388-393, doi:10.1016/j.bbrc.2013.05.111 (2013).
69 Goldwater, P. N. & Bettelheim, K. A. Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS). BMC medicine 10, 12 (2012).
70 Venturini, C., Beatson, S. A., Djordjevic, S. P. & Walker, M. J. Multiple antibiotic resistance gene recruitment onto the enterohemorrhagic Escherichia coli virulence plasmid. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 24, 1160-1166 (2010).
71 Cipolla, L. et al. New targets for antibacterial design: Kdo biosynthesis and LPS machinery transport to the cell surface. Curr Med Chem 18, 830-852 (2011).
72 Walsh, C. T. & Wencewicz, T. A. Prospects for new antibiotics: a molecule-centered perspective. J Antibiot (Tokyo) 67, 7-22, doi:10.1038/ja.2013.49 (2014).
73 NANCY A. STROCKBINE et al. Two Toxin-Converting Phages from Escherichia coli O157:H7 Strain 933 Encode Antigenically Distinct Toxins with Similar Biologic Activities. Infection and immunity 53, 135-140 (1986).
74 SUNG-LIANG YU, KAI-LIANG KO, CHANG-SHI CHEN, YU-CHUNG CHANG & SYU, W.-J. Characterization of the Distal Tail Fiber Locus and Determination of the Receptor for Phage AR1, Which Specifically Infects Escherichia coli O157:H7. Journal of bacteriology 182, 5962-5968 (2000).
校內:2019-02-14公開